Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Expanding our view of vision

By R&D Editors | January 28, 2014

MIT researchers combined fMRI and MEG data to reveal which parts of the brain are active shortly after an image is seen. At around 60 msec, only early visual cortex in the back of the brain was active (image at left). Then, activity spread to brain regions involved in later visual processing until the inferior temporal cortex was activated (image at right). This brain region represents complex shapes and categories of objects. Image courtesy of the researchersEvery time you open your eyes, visual information flows into your brain, which interprets what you’re seeing. Now, for the first time, Massachusetts Institute of Technology (MIT) neuroscientists have noninvasively mapped this flow of information in the human brain with unique accuracy, using a novel brain-scanning technique.

This technique, which combines two existing technologies, allows researchers to identify precisely both the location and timing of human brain activity. Using this new approach, the MIT researchers scanned individuals’ brains as they looked at different images and were able to pinpoint, to the millisecond, when the brain recognizes and categorizes an object, and where these processes occur.

“This method gives you a visualization of ‘when’ and ‘where’ at the same time. It’s a window into processes happening at the millisecond and millimeter scale,” says Aude Oliva, a principal research scientist in MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL).

Oliva is the senior author of a paper describing the findings in Nature Neuroscience. Lead author of the paper is CSAIL postdoctoral researcher Radoslaw Cichy. Dimitrios Pantazis, a research scientist at MIT’s McGovern Institute for Brain Research, is also an author of the paper.

When and where
Until now, scientists have been able to observe the location or timing of human brain activity at high resolution, but not both, because different imaging techniques are not easily combined. The most commonly used type of brain scan, functional magnetic resonance imaging (fMRI), measures changes in blood flow, revealing which parts of the brain are involved in a particular task. However, it works too slowly to keep up with the brain’s millisecond-by-millisecond dynamics.

Another imaging technique, known as magnetoencephalography (MEG), uses an array of hundreds of sensors encircling the head to measure magnetic fields produced by neuronal activity in the brain. These sensors offer a dynamic portrait of brain activity over time, down to the millisecond, but do not tell the precise location of the signals.

To combine the time and location information generated by these two scanners, the researchers used a computational technique called representational similarity analysis, which relies on the fact that two similar objects (such as two human faces) that provoke similar signals in fMRI will also produce similar signals in MEG. This method has been used before to link fMRI with recordings of neuronal electrical activity in monkeys, but the MIT researchers are the first to use it to link fMRI and MEG data from human subjects.

In the study, the researchers scanned 16 human volunteers as they looked at a series of 92 images, including faces, animals, and natural and manmade objects. Each image was shown for half a second.

“We wanted to measure how visual information flows through the brain. It’s just pure automatic machinery that starts every time you open your eyes, and it’s incredibly fast,” Cichy says. “This is a very complex process, and we have not yet looked at higher cognitive processes that come later, such as recalling thoughts and memories when you are watching objects.”

Each subject underwent the test multiple times—twice in an fMRI scanner and twice in an MEG scanner—giving the researchers a huge set of data on the timing and location of brain activity. All of the scanning was done at the Athinoula A. Martinos Imaging Center at the McGovern Institute.

Millisecond by millisecond
By analyzing this data, the researchers produced a timeline of the brain’s object-recognition pathway that is very similar to results previously obtained by recording electrical signals in the visual cortex of monkeys, a technique that is extremely accurate but too invasive to use in humans.

About 50 msec after subjects saw an image, visual information entered a part of the brain called the primary visual cortex, or V1, which recognizes basic elements of a shape, such as whether it is round or elongated. The information then flowed to the inferotemporal cortex, where the brain identified the object as early as 120 msec. Within 160 msec, all objects had been classified into categories such as plant or animal.

The MIT researchers are now using representational similarity analysis to study the accuracy of computer models of vision by comparing brain scan data with the models’ predictions of how vision works.

Using this approach, scientists should also be able to study how the human brain analyzes other types of information such as motor, verbal, or sensory signals, the researchers say. It could also shed light on processes that underlie conditions such as memory disorders or dyslexia, and could benefit patients suffering from paralysis or neurodegenerative diseases.

Source: Massachusetts Institute of Technology

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE