Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Exploring 3-D printing to make organs for transplants

By R&D Editors | August 21, 2014

A close-up of tiny bioink droplets used to print organs shows live cells inside. Image: American Chemical SocietyPrinting whole new organs for transplants sounds like something out of a sci-fi movie, but the real-life budding technology could one day make actual kidneys, livers, hearts and other organs for patients who desperately need them. In Langmuir, scientists are reporting new understanding about the dynamics of 3-D bioprinting that takes them a step closer to realizing their goal of making working tissues and organs on-demand.

Yong Huang and colleagues note that this idea of producing tissues and organs, or biofabricating, has the potential to address the shortage of organ donations. And biofabricated ones could even someday be made with a patient’s own cells, lowering the risk of rejection. Today, more than 120,000 people are on waiting lists for donated organs, with most needing kidney transplants. But between January and April of this year, just short of 10,000 people received the transplant they needed. There are a few different biofabricating methods, but inkjet printing has emerged as a frontrunner. It’s been used to print live cells, from hamster ovary cells to human fibroblasts, which are a common type of cell in the body. But no studies had been done to really understand how biological inks behave when they’re dispensed through printer nozzles. Huang’s team set out to fill that gap.

They tested bioinks with different concentrations of mouse fibroblasts plus a hydrogel made out of sodium alginate. They discovered, among other findings, that adding more cells in the material reduces both the droplet size and the rate at which it gets dispensed. The new results will help scientists move forward with this promising technology.

View Abstract

Source: American Chemical Society

Related Articles Read More >

New dangers in the woods — and the hope that research offers us
Novel mass spectrometry solution simplifies insight gathering into macromolecular complexes
ENPICOM launches display solution to accelerate antibody selection while maximizing precision
Thermo Fisher Scientific autoimmune-testing instruments now available in the U.S.
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars