Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

‘Explosive Evolution’ of Techniques to Restore Blood Flow to the Brain

By Loyola University Health System | January 19, 2018

Recent decades have seen an “explosive evolution” of techniques to restore blood flow to areas of the brain endangered by stroke or clogged arteries, according to a report by Loyola Medicine neurologists and neurosurgeons.

Historically, the introduction of operating microscopes enabled surgeons to perform delicate microsurgeries to clear clogged arteries and remove blood clots that cause strokes. More recently, physicians have begun using minimally invasive endovascular techniques.

“The last 50 to 60 years have witnessed an explosive evolution of techniques geared at restoring blood flow to compromised regions of the brain, senior author Camilo R. Gomez, MD, and colleagues wrote in the Nov. 9, 2017 MedLink Neurology.

Endovascular techniques do not require invasive open surgery. The physician employs catheters (thin tubes) that are guided through blood vessels to the brain. From the tip of the catheter, the physician deploys stents or other devices to restore blood blow. (Endovascular means inside blood vessels.) These endovascular techniques have “amplified the dimensions of care for many patients whose therapeutic options were previously limited,” the Loyola authors wrote.

Cerebral vascular insufficiency (not enough blood flow to the brain) increases the risk of stroke and is a major cause of neurologic death and disability worldwide. It is typically caused by atherosclerosis (buildup of fats, cholesterol and other substances that clog arteries that supply blood to the brain).

Techniques and procedures used to improve blood flow to the brain are similar to those used in heart procedures. They include bypass surgery, balloon angioplasty and stenting. One of the latest devices is called a stent retriever (also known as a stentriever). The device is a self-expanding mesh tube attached to a wire. The device is guided through blood vessels to a clot that is blocking blood flow to a part of the brain. The device pushes the blood clot against the wall of the blood vessel, immediately restoring blood flow. The stent retriever then is used to grab the clot, which is pulled out when the physician removes the catheter.

Dr. Gomez began performing neuroendovascular procedures more than 20 years ago, when the field was in its infancy. During that time, he said, there has been a tremendous improvement in both devices and techniques. “The chances a stroke patient will have a good outcome are two to three times better now than they were 10 to 15 years ago,” Dr. Gomez said.

Modern endovascular techniques can, in effect, stop a stroke in its tracks by removing blockages. Patients with the largest blockages and most devastating strokes are deriving the greatest benefits, said Loyola neurosurgeon Joseph C. Serrone, MD, one of the co-authors of the paper. “Seven clinical trials have shown that endovascular techniques restore significant function in these patients,” Dr. Serrone said.

In the past two decades, there have been tremendous advancements in the way ischemic strokes are treated, said Loyola neurosurgeon Matthew R. Reynolds, MD, PhD, also a co-author of the paper. “With the advent of mechanical thrombectomy (blood clot removal) and minimally-invasive techniques, patients who otherwise would be permanently disabled from stroke can often lead normal, productive lives,” Dr. Reynolds said. “It’s truly an exciting time to be an endovascular neurosurgeon.”

Dr. Gomez added that other surgical and endovascular procedures described in the paper can prevent strokes by restoring blood flow to chronically blocked vessels. Drs. Serrone and Reynolds, who have specialized training and expertise, were recently recruited to join Loyola’s neuroendovascular surgery program.

Related Articles Read More >

professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
Health-related innovation in Morocco highlighted by resident inventor patenting activity
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE