Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Featured R&D 100 Award Winner: Computationally Optimized Homogenization Heat Treatment Process

By R&D Magazine | March 28, 2017

Alloys are combinations of two or more elements. During solidification of any alloy, the elements segregate unevenly. This chemical segregation is unavoidable and results in non-uniform regions that negatively impact an alloy’s mechanical and physical properties. Redistribution of the alloying elements is necessary to achieve optimal performance for the desired application of an alloy. The computational approach to homogenization uses basic diffusion kinetics based on the chemical diffusion coefficient of each element to determine the homogenization cycle necessary to redistribute the alloy’s segregation prone elements more uniformly throughout the alloy. Conventional homogenization processes rely on a trial-and-error approach that results in the need for more experimentation and analysis. If the selected times and temperatures do not achieve the desired degree of homogenization, additional experimentation will be necessary to obtain an acceptable degree for that alloy’s application.

The Computationally Optimized Homogenization Heat Treatment Process, which won an R&D 100 Award, is for alloys exposed to extreme environments, including heat-resistant alloys or those that require corrosion/oxidation resistance. Such alloys are typically used in industries that service the aerospace, military, petrochemical, power generation, nuclear, structural, automotive and instrumentation sectors.

Related Articles Read More >

2024’s R&D 100 Researcher of the Year on the drive that inspired him to create digital twins of 141 million buildings
R&D 100 Awards
The 2025 R&D 100 Awards are now open for nominations
R&D 100 Awards
Call for Nominations: The 2025 R&D 100 Awards
R&D 100 winner of the day: Berelex Green eco-friendly, antiviral, antifungal, and antibacterial paint
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE