Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Finding the Achilles Heel of Cancer

By Instituto Gulbenkian De Ciencia | March 29, 2018

Healthy cells (left image) display four centrioles, a normal number (in yellow). On the contrary, breast cancer cells (triple negative) have extra centrioles (here 16, right image). Photo: Gaëlle Marteil, IGC.

A research team led by Monica Bettencourt Dias, from Instituto Gulbenkian de Ciencia (IGC, Portugal), discovered important features of cancer cells that may help clinicians fighting cancer.

The researchers observed that the number and size of tiny structures that exist inside cells, called centrioles, are increased in the most aggressive sub-types of cancer. This study will be published in Nature Communications* on the 28th of March.

Cancer is a very diverse disease with some tumours being more aggressive and more resistant to chemotherapy than others. Clinicians are eager to find novel diagnostic, prognostic and treatment tools that allow them to predict outcomes and treat patients in a more personalised way. The study now published may contribute to this process.

About 100 times smaller than the cross section of a hair, centrioles have been called the cell´s “brain”, as they play crucial roles in cell multiplication, movement and communication. Their number and size are highly controlled in normal cells. Since their discovery, more than one century ago, it has been proposed that an abnormal increase in the number of these structures may induce cancer..

Bettencourt-Dias’s team investigated the incidence of centriole abnormalities in human cancer cells. The researchers thoroughly analysed a panel of 60 human cancer lines originated from 9 distinct tissues. Their results reveal that cancer cells often have extra and longer centrioles, which are absent in normal cells. Importantly, the research team observed that supernumerary centrioles are more prevalent in aggressive breast – as the triple negative – and colon cancer. Also, the team discovered that longer centrioles are excessively active, which perturbs cell division and could favour cancer formation.

“Our data confirm that deregulated number and size of centrioles inside cells is associated with malignant features. This finding may help establishing centriole properties as a way of classifying tumours in order to establish prognosis and predict treatment response”, says Gaelle Marteil, first author of this study and researcher at Bettencourt-Dias laboratory.

What is the next step? “The cell lines that we analysed are already well characterized in terms of genetic changes and resistance to therapeutics. We are pursuing our studies in collaboration with Nuno Barbosa-Morais’ team at Instituto de Medicina Molecular, in Lisbon, and Joana Paredes at I3S, in Porto, to explore new mechanisms and therapeutics that could target centrioles in cancer”, adds Monica Bettencourt-Dias.

Related Articles Read More >

Open-source Boltz-2 can speed binding-affinity predictions 1,000-fold
Thermo Fisher’s new Orbitrap Excedion Pro targets complex biotherapeutics for drug development
FDA’s new ‘Elsa’ AI set to expedite clinical protocol reviews
Waters touts six-fold robustness with new Xevo TQ Absolute XR
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE