Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Fragment Library

By R&D Editors | December 16, 2010

Thermo Fisher Scientific Inc. announced that its Maybridge Ro3 Diversity Fragment Library has helped researchers validate an emerging technique for drug discovery that targets key protein receptors involved in a wide range of biological functions.

David Myszka, founder of Biosensor Tools LLC and director of the Center for Biomolecular Interaction Analysis at the University of Utah, used surface plasmon resonance (SPR) to screen small molecules (fragments) in the Maybridge Ro3 collection against stabilised G-Protein Coupled Receptors (GPCRs) provided by Heptares Therapeutics1. Several new classes of compounds were identified from the Ro3 library, which is accelerating drug discovery efforts around these receptors

Dr. Myszka’s study demonstrated for the first time that fragment screening by SPR is an effective approach. It utilises the sensor surface to purify and concentrate solubilised tagged GPCRs and then characterise their binding activities with the fragments. Dr. Myszka and Rebecca Rich, a research scientist in Dr. Myszka’s group, recently presented their work, “Fragment Screening against Membrane Receptors using SPR,” at the Fragment-Based Lead Discovery Conference in Philadelphia and at the Developments in Protein Interaction Analysis symposium in Barcelona, Spain.

“While fragment screening by SPR has become standard practice, this is the first example of a successful SPR-based fragment screen against GPCRs,” said Dr. Myszka. “One major factor contributing to our success was the integrity of the Maybridge Ro3 Fragments. The library was well-behaved in terms of high solubility and displayed minimal nonspecific binding or so-called promiscuous binders. In addition, the structural diversity within this library allowed us to span a lot of chemical space, helping us to identify subsets of novel compounds that targeted two GPCRs. From the primary screen we identified thematic structural elements in the hits and then selected analogs from within the full Maybridge collection to investigate as confirmatory hits. With these follow-up studies in hand, we are now poised to pursue the next stage in elaborating compounds for drug development.”

“The guaranteed aqueous solubility of Maybridge Ro3 Fragments is not only key from a practical perspective, but it also provides an insight into likely ADME problems as the hits are evolved into drug-like molecules,” said Simon Pearce, product manager for Maybridge products at Thermo Fisher Scientific. “Furthermore, pharmacophoric enrichment and quality assurance of at least 95 percent, with full Rule of Three (Ro3) compliance, meant that all fragments used for the study possessed physicochemical properties that also increased the probability of successful hits.”

Thermo Fisher Scientific and Dr. Myszka are continuing their collaboration as the study now expands to drug development using additional Maybridge Ro3 Fragments.

Thermo Fisher Scientific Inc.

Related Articles Read More >

PerkinElmer participating at Bio-IT World Conference & Expo
Nalu Medical’s mIPG is focus of Episode 7 of R&D 100 – The Podcast
R&D 100 winner of the day: Portable EnGineered Analytic Sensor with aUtomated Sampling (PEGASUS)
UCLA bioengineers develop new class of human-powered bioelectronics
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars