Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Graphene Hybrid Energy Method Could Be Utilized by Rockets

By Chris Adam, Purdue University | April 11, 2019

Graphene, a new material with applications in biomedical technology, electronics, composites, energy and sensors, may soon help send rockets to space.

A new propellant formulation method to use graphene foams—material used in electronics, optics and energy devices—to power spacecraft is being developed in Purdue University’s Maurice J. Zucrow Laboratories, which is the largest academic propulsion lab in the world. The research is showing success at increasing burn rate of solid propellants that are used to fuel rockets and spacecraft.

“Our propulsion and physics researchers came together to focus on a material that has not previously been used in rocket propulsion, and it is demonstrating strong results,” said Li Qiao, an associate professor of aeronautics and astronautics in Purdue’s College of Engineering.

The research team, led by Qiao, developed methods of making and using compositions with solid fuel loaded on highly conductive, highly porous graphene foams for enhanced burn rates for the loaded solid fuel. They wanted to maximize the catalytic effect of metal oxide additives commonly used in solid propellant to enhance decomposition.

The graphene foam structures are also thermally stable, even at high temperatures, and can be reused. The developed compositions provide significantly improved burn rate and reusability.

Qiao said the graphene foam works well for solid propellants because it is super lightweight and highly porous, which means it has many holes in which scientists can pour fuel to help ignite a rocket launch.

The graphene foam has a 3D, interconnected structure to allow a more efficient thermal transport pathway for heat to quickly spread and ignite the propellant.

“Our patented technology provides higher performance that is especially important when looking at areas such as hypersonics,” Qiao said. “Our tests showed a burn rate enhancement of nine times the normal, using functionalized graphene foam structures.”

Qiao said the Purdue graphene foam discovery has applications for energy conversion devices and missile defense systems, along with other areas where tailoring nanomaterials for specific outcomes may be useful.

Qiao and the team have worked with the Purdue Research Foundation Office of Technology Commercialization to patent their technologies. They are looking for partners to license them.

Their work aligns with Purdue’s Giant Leaps celebration, acknowledging the university’s global advancements in space exploration as part of Purdue’s 150th anniversary. Space exploration, including propellants research, is one of the four themes of the yearlong celebration’s Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

Related Articles Read More >

The emerging materials shaping next-generation semiconductor electronics
24 R&D trends that redefined 2024
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 3: The sensor
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 2: The graphene context
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE