Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Hormone Identified That Limits Liver Fibrosis

By Kobe University | October 17, 2016

This image shows the application of IGF-I for the treatment of NASH and liver cirrhosis. Source: Nishizawa H, Takashi Y et al.

Nonalcoholic steatohepatitis (NASH) has been emerging worldwide and effective treatment, especially for liver fibrosis, is essential for improving the prognosis. A Japanese research team has identified and clarified the mechanism for a hormone that limits the fibrosis associated with NASH and cirrhosis. This discovery has potential applications for the treatment of these conditions. These findings were published on October 10 in the online version ofScientific Reports.

The research group was led by Associate Professor TAKAHASHI Yutaka (Division of Diabetes and Endocrinology, Department of Internal Medicine, Graduate School of Medicine) and medical research fellow NISHIZAWA Hitoshi (Division of Diabetes and Endocrinology, Kobe University Hospital).

NASH is a progression of nonalcoholic fatty liver disease (NAFLD) in the context of obesity and diabetes, resulting in fatty deposits, inflammation and fibrosis. In some cases fibrosis develops into liver cirrhosis or liver cancer, shortening life expectancy. NAFLD is closely associated with metabolic syndrome, and cases of NASH are increasing along with obesity and diabetes – an estimated three to four million patients in Japan currently suffer from NASH. It is becoming a serious public health issue. Liver fibrosis (including its manifestation in liver cirrhosis) is strongly associated with increased mortality, so the development of drugs to control fibrosis is a pressing issue. However, current medicines only have limited effectiveness.

The prevalence of fatty liver and NASH are very high in patients with growth hormone (GH) deficiency, and the research group has demonstrated that this was caused by a lack of insulin-like growth factor-I (IGF-I), which is mainly induced by growth hormone. The group has further proved that administering growth hormone alleviated the NASH conditions caused by adult growth hormone deficiency, and treatments of GH and IGF-I were effective when applied to model animals with growth hormone deficiency.

In order to clarify the potential clinical applications of IGF-I on common forms of NASH and liver cirrhosis, they investigated its effectiveness on animal models, and discovered that it was drastically effective in improving the characteristics of NASH, especially fibrosis. First, they used a model mouse suffering from obesity-related NASH to test the effects of IGF-I. After one month of administering IGF-I, they noted drastic positive changes in the characteristics of NASH: fatty deposits, inflammation and fibrosis. In a model mouse, who had developed liver cirrhosis, they also noted ameliorations in fibrosis. After investigating the mechanism behind this, they discovered that IGF-I acts on hepatic stellate cells, which play a key role in the development of fibrosis. IGF-I suppresses the activation of these cells by causing cellular senescence and consequently preventing fibrosis. IGF-I also improved mitochondrial function and oxidative stress in the liver (both causes NASH), alleviating fatty deposits and inflammation.

Medication that suppresses NASH-related liver fibrosis and other complications is currently very limited. These findings suggest that IGF-I can be used to prevent the development of fibrosis, and thus improve prognosis and alleviate complications for sufferers of NASH and cirrhosis. IGF-I may also be effective on models for cirrhosis related with viral hepatitis, because the activation of stellated cells is a common pathway to fibrosis. The unique mechanism for IGF-I has been clarified, and combination with other medications could potentially lead to a breakthrough in medical treatment for fibrosis.

Related Articles Read More >

5 R&D developments to keep an eye on this week: Solar crash and Trump’s energy pivot meets Musk’s rebellion
Mayo Clinic develops AI tool that can spot 9 dementia types with a single scan
Google DeepMind’s AlphaGenome AI predicts how non-coding DNA can drive disease
Top 10 drugs by patent volume: How biologics build ‘platform empires’ while small molecule create ‘patent thickets’
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE