Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Insect Vision benefits Bio-inspired, Autonomous Robot Eyes

By R&D Editors | June 11, 2015

University of Adelaide Ph.D. student Zahra Bagheri and supervisor Professor Benjamin Cazzolato (School of Mechanical Engineering) with the robot under development. The robot features a vision system using algorithms based on insect vision. Courtesy of The University of AdelaideThe way insects see and track their prey is being applied to a new robot under development at the University of Adelaide, in the hopes of improving robot visual systems. The project — which crosses the boundaries of neuroscience, mechanical engineering and computer science — builds on years of research into insect vision at the University.

In a new paper published June 10, 2015, in the Journal of The Royal Society Interface, researchers describe how the learnings from both insects and humans can be applied in a model virtual reality simulation, enabling an artificial intelligence system to ‘pursue’ an object.

“Detecting and tracking small objects against complex backgrounds is a highly challenging task,” says the lead author of the paper, Mechanical Engineering Ph.D. student Zahra Bagheri.

“Consider a cricket or baseball player trying to take a match-winning catch in the outfield. They have seconds or less to spot the ball, track it and predict its path as it comes down against the brightly colored backdrop of excited fans in the crowd — all while running or even diving towards the point where they predict it will fall!

“Robotics engineers still dream of providing robots with the combination of sharp eyes, quick reflexes and flexible muscles that allow a budding champion to master this skill,” she says.

Research conducted in the lab of University of Adelaide neuroscientist Dr. Steven Wiederman (School of Medical Sciences) has shown that flying insects, such as dragonflies, show remarkable visually guided behavior. This includes chasing mates or prey, even in the presence of distractions, like swarms of insects.

“They perform this task despite their low visual acuity and a tiny brain, around the size of a grain of rice. The dragonfly chases prey at speeds up to 60 km/h, capturing them with a success rate over 97 percent,” Bagheri says.

The team of engineers and neuroscientists has developed an unusual algorithm to help emulate this visual tracking. “Instead of just trying to keep the target perfectly centered on its field of view, our system locks onto the background and lets the target move against it,” Bagheri says. “This reduces distractions from the background and gives time for underlying brain-like motion processing to work. It then makes small movements of its gaze and rotates towards the target to keep the target roughly frontal.”

This bio-inspired “active vision” system has been tested in virtual reality worlds composed of various natural scenes. The Adelaide team has found that it performs just as robustly as the state-of-the-art engineering target tracking algorithms, while running up to 20 times faster.

“This type of performance can allow for real-time applications using quite simple processors,” says Wiederman, who is leading the project, and who developed the original motion sensing mechanism after recording the responses of neurons in the dragonfly brain.

“We are currently transferring the algorithm to a hardware platform, a bio-inspired, autonomous robot.”

Related Articles Read More >

Why IBM predicts quantum advantage within two years
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
This week in AI research: Latest Insilico Medicine drug enters the clinic, a $0.55/M token model R1 rivals OpenAI’s $60 flagship, and more
How the startup ALAFIA Supercomputers is deploying on-prem AI for medical research and clinical care
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE