Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Laser technique enables 3-D analysis, natural color images

By R&D Editors | October 11, 2013

A bisected yellow jacket head. Image: Benjamin HallA new technology invented to automate the laborious process of preparing plant roots for phenotyping has morphed into a powerful tool for exploring the 3-D structure of small objects. Now, two former Penn State Univ. students have formed a startup company targeting agribusiness and horticultural research.

The standard method of preparing root samples for analysis requires cutting thin slices of root by hand, a process that yields four to five slices per hour. Jonathan Lynch, a prof. of plant nutrition at Penn State and head of the Roots Lab, had a backlog of 20,000 samples he was studying to improve drought tolerance and nutritional uptake in low fertility soil. Benjamin Hall was an undergraduate student in energy engineering working part-time in the laser laboratory of the Applied Research Laboratory at Penn State. Lynch applied for a small grant from the National Science Foundation’s Research Experience for Undergraduates (REU) program, which funded Hall to work on a project to apply lasers for slicing his root samples.

Using a nanosecond-pulse laser, Hall developed a method to slice 11 identically spaced root samples per second. “Then I had to take the samples all the way across campus to the root lab to have them analyzed,” Hall says. “It was easier to buy a good camera lens and take the photos myself and send the files to the lab.”

Hall struggled with finding the proper backlighting to make clear images but eventually discovered that the laser itself provided sufficient light to light up the image while it was being cut. By placing the root on a moveable platform beneath the laser, he could incrementally vaporize sections of the root, leaving a series of clear surface images, which could be combined with software to make a 3-D rendering of the interior and exterior of the sample.

“This is a tomography technique, and there are others out there,” says Hall. “But x-ray tomography basically works by mapping the density of a substance, which is great unless the specimen has different materials of similar density. That can make it hard to differentiate structures, so it can be difficult to quantify measurements. Magnetic resonance imaging (MRI) we’re not even competing with. Those machines are so big and complex, and so expensive to operate compared to our system.”

The laser tomography method is novel in that it provides high contrast, full color images without the use of contrast enhancing agents. This allows researchers to see nuance compositional differences in their samples they would not be able to see otherwise. Additional benefits of the laser tomography method are its speed, on the order of minutes, and that in most cases no preparation is required for the small biological specimens studied.

Penn State has applied for a patent, and Hall and his business partner Brian Reinhardt, a former Penn State graduate student, have founded a company, Lasers for Innovative Solutions (L4IS), aimed at providing large agriculture companies with high-throughput phenotyping of their new products, something they don’t currently have.

Source: Penn State Univ.

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE