Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Life Tech, IU Map Gene Fusions

By R&D Editors | April 6, 2012

Life Technologies Corporation scientists, in collaboration with Indiana University School of Medicine researchers, have published study results indicating the utility of RNA-Seq mapping to detect gene fusions in cancer cells.

The study, titled “RNA-Seq Mapping and Detection of Gene Fusions with a Suffix Array Algorithm,” was published in PLOS, the Public Library of Science.

Advances in sequencing technology are enabling detailed characterization of RNA transcripts from biological samples, but the fundamental challenge of accurately mapping reads and gleaning biological meaning from the data remains. One class of transcripts, gene fusions, is particularly important in cancer. For example, 95% of patients with clinical chronic myeloid leukemia (CML) express the BCR-ABL gene fusion in their leukemia cells due to a reciprocal translocation between the long arms of chromosomes 9 and 22. BCR-ABL is also found to be a factor in 30% to 50% of adult acute lymphoblastic leukemia cases. Fusion genes are thought to cause tumorigenesis by over-activating proto-oncogenes, deactivating tumor suppressors, or altering the regulation and/or splicing of other genes which lead to defects in key signaling pathways.

In the current study, the investigators used Life Technologies’ RNA-Seq to describe a new method enabling detection of fusions in cancer cell lines. The method includes a new algorithm to find fusion breakpoints. 

“This new algorithm, called SASR (Suffix Array Splice Read mapping), makes it easier to detect reads that span fusion junctions,” said Onur Sakarya, first author on the study and a senior scientist with Life Technologies’ Ion Bioinformatics group.

“The SASR algorithm described in this publication provides a novel unbiased approached to gene fusion and splicing discovery. This method will greatly increase the sensitivity and specificity of junction detection compared to current methods and allow researchers to harness more data from their RNA-sequencing projects,” said Milan Radovich, Ph.D., a collaborator on the study and assistant research professor of surgery at the Indiana University School of Medicine in Indianapolis.

Date: April 5, 2012
Source: Life Technologies Corporation

Related Articles Read More >

Thermo Fisher’s new Orbitrap Excedion Pro targets complex biotherapeutics for drug development
FDA’s new ‘Elsa’ AI set to expedite clinical protocol reviews
Waters touts six-fold robustness with new Xevo TQ Absolute XR
Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE