Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Mathematicians Solve 60-year-old Fermi-Pasta-Ulam Problem

By R&D Editors | March 24, 2015

Nobel laureate Enrico Fermi helped to outline the first-ever computer simulation for research purposes — of a one-dimensional vibrating nonlinear string. Courtesy of Department of EnergyA 60-year-old math problem first put forward by Nobel laureate Enrico Fermi has been solved by researchers at the University of East Anglia, the Università degli Studi di Torino (Italy) and the Rensselaer Polytechnic Institute (US).

In 1955, a team of physicists, computer scientists and mathematicians led by Fermi used a computer for the first time to try to solve a numerical experiment.

The outcome of the experiment wasn’t what they were expecting, and the complexity of the problem underpinned the then new field of non-linear physics and paved the way for six decades of new thinking.

Chaos theory, popularly referred to as the butterfly effect, is just one of the theories developed to try and solve the ‘Fermi-Pasta-Ulam’ problem.

Researchers at UEA looked to the oceans for inspiration and used what is known as wave turbulence theory to partially solve the problem.

Dr Davide Proment from UEA’s School of Mathematics, said: “Enrico Fermi, John Pasta and Stanislaw Ulam outlined the first-ever computer simulation for research purposes — of a one-dimensional vibrating nonlinear string.

“It was designed to mimic how heat is conducted into solids and the authors expected to observe that the heat energy would be equally distributed after a while.

“On the contrary, they reported a complicated recurrence phenomena which led to the development of new math and physics theories over the last six decades.

“Various mathematical approaches have been put forward to understand the recurrence, now called FPU-recurrence, and explain the thermalization, which occurs only at incredibly large time scales.

“We borrowed ideas from a different mathematical topic called wave turbulence theory, which was developed and applies to wave systems like ocean or plasma waves.

“Thanks to this lateral approach, we partially answered the 60-year-old FPU problem. We were able to predict the long thermalization timescale knowing the initial conditions of the system. We also corroborated our theoretical result with extensive numerical simulations.

“This is an interesting example on how cross-fertilization between different areas of math and physics can be sometimes very successful.”

‘Route to thermalization in the α-Fermi-Pasta-Ulam system’ is published in the journal PNAS on March 23, 2015.
 

Related Articles Read More >

Why IBM predicts quantum advantage within two years
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
This week in AI research: Latest Insilico Medicine drug enters the clinic, a $0.55/M token model R1 rivals OpenAI’s $60 flagship, and more
How the startup ALAFIA Supercomputers is deploying on-prem AI for medical research and clinical care
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE