Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Modeling Protein Interactions Critical to Understanding Disease Now Simplified With Computer Server

By Stony Brook University | April 27, 2017

Dima Kozakov, right, and Dzmitry Padhorny, co-author and graduate student, continue to work on ClusPro, the server that enables researchers worldwide to calculate and display protein interactions, as shown in the background based on color and shape patterns.

 Proteins are the most abundant substance in living cells aside from water, and their interactions with cellular functions are crucial to healthy life. When proteins fall short of their intended function or interact in an unusual way, these disruptions often lead to disease development. By modeling the structure of  protein interactions – a process that has been complicated for researchers for years – scientists gain important insight to many diseases.  Stony Brook University-led research team through the Laufer Center for Physical and Quantitative Biology has created a user-friendly automated computer server that calculates complex computations of modeling protein interactions with a handful of clicks from a home computer. The resource, available to researchers around the world, is detailed in a paper published in Nature Protocols.

Understanding the rules by which proteins interact enables researchers to design new interactions. For example, modeling interactions of special proteins called antibodies with other molecules  may enable pharmacology researchers to develop new and better drugs to target cancer or HIV.

Lead author Dima Kozakov, PhD, Assistant Professor in the Department of Applied Mathematics and Statistics in the College of Engineering and Applied Sciences, and an affiliate faculty member of the Laufer Center and the Institute for Advanced Computational Science at Stony Brook University, says that determining the structure of the protein  interactions is no simple task. Additionally, defining the 3D atomic structure of protein complexes is crucial, as this helps scientists determine molecular mechanisms of many  diseases.

“Obtaining 3D structures of such complexes is not a trivial matter, as proteins typically have sizes much smaller than the wavelength of visible light  and thus cannot be seen in a microscope,” explains Dr. Kozakov. “Traditionally, protein complex structures were obtained using expensive and time-consuming experimental techniques such as X-ray crystallography. While these techniques worked relatively well for finding the structures of individual proteins, the delicate, short-lived protein complexes pose a much more difficult problem.”

To bridge the gap between the number of known individual protein structures and the number of known complexes, Dr. Kozakov explained, researchers created special computational algorithms. The idea behind all of these algorithms is to predict the structure of the complex using the structures of individual proteins as inputs. Computer programs calculate billions of possible arrangements of molecules forming the complex and then defines the one that optimizes the interatomic forces.  This computational approach became known as protein docking.

For the last decade, Dr. Kozakov and his collaborators have developed  unique protein docking algorithms, which  originally existed only as highly sophisticated computational programs, and only trained scientists and programmers specializing in protein modeling could perform the calculations.

To make high-performance computational tools for protein modeling and docking accessible to any researcher, Dr. Kozakov and colleagues in his lab, together with collaborators at Boston University, developed the ClusPro server. In the paper titled, “The ClusPro web server for protein-protein docking,” the researchers describe advancements that made the system user-friendly and accessible to all researchers from their personal computers.  

ClusPro allows its users to model not only protein-protein complexes, but also interactions of proteins with other types of molecules. For instance, it can be used to predict how proteins bind to nucleic acids – such as RNA, or heparins – sugar-like molecules that are widely used as blood thinner medications.

Approximately 18,000 researchers worldwide have now used ClusPro, which has consistently provided the most accurate results among automated protein docking servers in an international competition called CAPRI. The design of the server is not only for professional scientific use. The simplicity of usage enables educators and students to use ClusPro, such as for high-school and college courses.

Related Articles Read More >

From solar system simulations to SaaS savings, how Codeium’s AI agent empowers non-coders and scientists alike
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
Quantum Brilliance, Pawsey integrate room-temp quantum with HPC on NVIDIA GH200
Frontier supercomputer reveals new detail in nuclear structure
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE