Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Nanomaterial Yields Hydrogen Fuel from Seawater

By Kenny Walter | October 5, 2017

Artist’s conceptualization of the hybrid nanomaterial photocatalyst that’s able to generate solar energy and extract hydrogen gas from seawater. Credit: The University of Central Florida

Researchers have developed an inexpensive method to extract hydrogen from seawater, which could result in a more efficient way to power fuel cells.

A team from the University of Central Florida (UCF) has developed a new hybrid nanomaterial that harnesses solar energy to generate hydrogen from seawater that could be used for a new source of clean-burning fuel, while easing the demand for fossil fuels.

“We’ve opened a new window to splitting real water, not just purified water in a lab,” UCF Assistant Professor Yang Yang, Ph.D., said in a statement. “This really works well in seawater.”

The researchers used a photocatalyst—a material that spurs a chemical reaction using energy from light—durable enough to handle the biomass and corrosive salt of seawater.

To achieve this, they used a catalyst that was able to not only harvest a much broader spectrum of light than other materials but also stand up to the harsh conditions of seawater.

Yang fabricated a photocatalyst composed of a hybrid material where tiny nanocavities were chemically etched onto the surface of an ultrathin film of titanium dioxide—the most common photocatalyst.

The nanocavity indentations were coated with nanoflakes of molybdenum disulfide—a 2D material with the thickness of a single atom.

The new catalyst is able to significantly boost the bandwidth of light that can be harvested. By controlling the density of sulfur vacancy within the nanoflakes, it can produce energy from ultraviolet-visible to near-infrared light wavelengths, making it at least twice as efficient as current photocatalysts used.

“We can absorb much more solar energy from the light than the conventional material,” Yang said.

According to Yang, producing a chemical fuel from solar energy is a better solution than producing electricity from solar panels because electricity must be used or stored in batteries that degrade, while hydrogen gas is easily stored and transported.

The researchers will now focus on scaling up the fabrication and improving its performance so it is possible to split hydrogen from wastewater.

The study was published in Energy & Environmental Science

Related Articles Read More >

Researchers measure photovoltaic external quantum efficiency to transform the future of solar cells
U.S. DOE grants $25M to advance clean hydrogen technologies for electricity generation 
SOLiTHOR seeds $10.6M to develop a new solid-state battery cell technology
Powering the moon: Sandia researchers design microgrid for future lunar base
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars