Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

New Pathway for Stalling BRCA Tumor Growth Revealed

By R&D Editors | February 3, 2015

Inhibiting the action of a particular enzyme dramatically slows the growth of tumor cells tied to BRCA1 and BRCA2 genetic mutations which, in turn, are closely tied to breast and ovarian cancers, according to researchers at NYU Langone Medical Center.

Senior investigator and NYU Langone cell biologist Agnel Sfeir, PhD, said that if further experiments prove successful, these findings could lead to a new class of targeted therapies against cancers with BRCA1 and BRCA2 mutations. The researchers’ findings in experiments in mice and human cells are described in the journal Nature online Feb. 2.

Dr. Sfeir and her collaborators say their discovery about the enzyme — called polymerase theta, or PolQ — resulted from efforts to answer a fundamental biological question: How do cells prevent the telomere ends of linear chromosomes, which house our genetic material, from sticking together? Cell DNA repair mechanisms can stitch together telomeres broken as part of cell metabolism. But such fusions, the researchers say, compromise normal cell growth and survival.

“In the purest biological sense, our findings show how this particular enzyme, which we know is active in several tumors, promotes unwanted telomere fusions by inserting whole segments of DNA via a disruptive DNA repair pathway termed alt-NHEJ,” said Dr. Sfeir, an assistant professor at NYU Langone and its Skirball Institute for Biomolecular Medicineand a member of NYU’s Laura and Isaac Perlmutter Cancer Center. “It was quite remarkable to find that by blocking PolQ action, cancer cell growth was cut by more than half.”

For the study, Dr. Sfeir and colleagues at the Scripps Research Institute focused their analysis on telomeric DNA. They noted that as the chromosome ends were being joined, whole sections of new genetic material were being inserted into the telomeric DNA — suggesting that any of a dozen or more DNA-synthesizing polymerase enzymes were at work. Researchers then focused on PolQ, in part because it is known to be active in several tumors, including breast and ovarian, but also in liver and colon cancers. Breast and ovarian cancers are among the leading causes of cancer death among women in the United States.

Additional experiments confirmed that PolQ is needed to activate the alt-NHEJ pathway of DNA repair. Unlike the main, error-free pathway — or HDR pathway — the alt-NHEJ pathway does not use a related chromosome’s genetic material as a template to meticulously correct any damaged genetic material. As such, alt-NHEJ is highly likely to leave coding mistakes.

“Our studies will continue to look at how the alt-NHEJ pathway operates,” Dr. Sfeir adds, “and what biological factors cells use in addition to PolQ to choose between the error-prone or error-free DNA repair pathways.”

Source: NYU

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE