Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Novel Genetic Analysis Approach Could Improve Diagnosis for Mitochondrial Disease

By Murdoch Childrens Research Institute | August 8, 2017

Murdoch Children’s Research Institute (MCRI) scientists have shown a new approach to genetic analysis could greatly improve diagnostic rates for children with baffling and often fatal mitochondrial diseases.

Mitochondrial diseases are devastating conditions affecting babies, older children and adults. UK baby Charlie Gard suffered from a form of the condition called mitochondrial DNA depletion syndrome, which ultimately cost him his life.

Mitochondria are the power plants of cells, breaking down molecules from sugars, fats and proteins to generate energy for the human body, like burning coal to produce electricity.

Until recently, diagnosis for mitochondrial diseases has been very slow with only about a quarter of patients receiving a genetic diagnosis. Current treatments are also unsatisfactory – for example, an unproven therapy for mitochondrial DNA depletion syndrome was behind a UK court’s decision for preventing Charlie Gard’s family from travelling to the US to access the treatment.

However, new diagnostic methods like whole exome sequencing – which can quickly and cheaply sequence a person’s entire genetic blueprint – means up to two-thirds of affected children can now be diagnosed.

However other approaches are needed to identify the difficult cases that continue to elude diagnosis.

Research led by MCRI PhD student Nicole Lake found a new cause of mitochondrial disease, which affects the ability of the mitochondria to operate as the body’s power plant, converting food into energy.

Ms Lake said the research she led identified mutations in a gene called MRPS34, in six patients with the most common form of childhood mitochondrial disease, Leigh Syndrome, from Australia, France and the USA.

“A key approach was using quantitative proteomics. This process involves sampling all the proteins in a cell at once to identify any problems with the cellular machinery,” said Ms Lake.

“Using this technique, you get a snapshot of what’s happening in cells.”

The MRPS34 gene is one of 80 components of the mitochondrial protein synthesis machinery, known as the ‘mitoribosome’.

Co-lead author Dr David Stroud at Monash University carried out the quantitative proteomics technique, examining cellular proteins in the patient’s cultured skin cells, versus healthy skin cells. This showed one half of the mitoribosome fell apart, meaning cells could not make the key proteins encoded by mitochondrial DNA.

It also showed that this led to two of the five major components of the power plants falling apart, causing the machinery that fuels the body’s energy to break down.

MCRI Chief Investigator, Professor David Thorburn said MRPS34 was the 25th mitochondrial disease gene discovered by scientists at MCRI and one of the first in the world to show that quantitative proteomics could play a key role in improving diagnostic rates to closer to 100 per cent.

“This approach will therefore help to end the diagnostic odyssey for families with children suspected of mitochondrial and other inherited diseases,” he said.

“Early diagnosis improves the chance for early intervention. It can also provide the opportunity to enrol patients with mitochondrial diseases into clinical trials to test many new promising therapies that are in the pipeline, but not yet proven.”

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE