Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Polymer Professor Develops Safer Component for Lithium Batteries

By University of Akron | June 27, 2018

This is Dr. Yu Zhu. Credit: The University of Akron

The power source for things like implanted medical devices, electric cars or unmanned aerial vehicles are vital to their performance. So, what would happen if that powerhouse of energy — a lithium battery — failed? An electric or hybrid car would render useless and a much-needed biomedical device would hamper a patient’s health.

These are the kinds of things Polymer Science Professor Dr. Yu Zhu, along with other researchers, is trying to prevent.

A recent paper from Zhu’s research group, “A Superionic Conductive, Electrochemically Stable Dual-Salt Polymer Electrolyte,” will be published Tuesday in the journal Joule, Cell Press’s forward-looking journal spanning energy research across disciplines.

Specifically, Zhu and his research team developed a solid polymer electrolyte that can be used in lithium ion batteries to replace the current liquid electrolyte to improve the safety and performance of lithium batteries.

Zhu says solid electrolytes has not been commercialized in lithium batteries because of drawbacks like low ionic conductivity and high interfacial resistance with electrodes. However, Zhu and his team demonstrated that a dual-salt based polymer solid electrolyte exhibited superionic conductivity at room temperature and outstanding electrochemical stability with lithium battery electrode materials.

“A solid electrolyte has long been thought for lithium ion batteries due to its nonflammable property and high mechanical strength that may mitigate the disaster caused by battery failure,” says Zhu. “Battery safety and energy density are major concerns for emerging applications of lithium batteries, such as for use in electrical vehicles. If the solid polymer electrolyte is successfully developed, the energy density of the battery could be doubled and the safety concerns for lithium batteries could be removed. This research sets up a strong base to develop such a promising solid electrolyte for lithium batteries.”

Related Articles Read More >

Chemistry Nobel goes to ‘molecular architecture’ with spaces big enough to trap gases
ORNL named on 20 R&D 100 Awards, including carbon-capture and AM tools
2025 R&D Technician of the Year: Dow’s Richard Tapper pushes flame-retardant limits to curb real-world fire risks
Researchers synthesize first Berkelium-containing molecule
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE