Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Smaller Virus Reshaped for Drug Delivery

By Amanda Morris, Northwestern University | September 22, 2016

Tullman-Ercek’s miniature capsid particle.

Viruses are masters of delivery. When we become infected, viruses integrate with our cells in order to insert their own genetic material inside us. So as researchers look for novel ways for more precise drug delivery, using viruses seems like an obvious choice.

“There is a lot of work to develop viral vectors into drug delivery agents,” says Northwestern Engineering’s Danielle Tullman-Ercek. “What we don’t know is how the virus’s properties, like shape and size, affect this delivery process.”

Tullman-Ercek, associate professor of chemical and biological engineering in Northwestern’s McCormick School of Engineering, has created a new method to help researchers discover how much the virus’s size matters. By mutating a single amino acid in a bacterial virus, Tullman-Ercek’s team drastically changed the size of its protein coating, or capsid.

“To date, there has not really been a way to compare what happens with different sizes and shapes of the same virus,” Tullman-Ercek says. “Size matters for a lot of drug delivery purposes because it changes which cells are accessible and how much information can be housed inside the virus.” 

Supported by the National Science Foundation and the Army Research Office, the research was reported in the journal Nano Letters. Michael Asensio and Norma Morella, graduate students in Tullman-Ercek’s laboratory, were the paper’s co-first authors.

To change the capsid’s size and shape, Tullman-Ercek used directed evolution, an engineering method that mimics the process of natural selection. Her team copied the virus’s DNA over and over to produce millions of copies, some of which had evolved and mutated. Then they looked for the mutation that made the capsid smaller.

“We weren’t expecting to see anything so drastically different from the original,” Tullman-Ercek says. “We just wanted to see what changes we could make and how much they would affect virus properties such as stability. But it turned out to be very successful.”

Approximately 70 percent of the generated population experienced the mutation that shrunk the capsid. While the original capsid was 180 subunits, the mutated version has only 60 subunits. This changed the original structure form 27 nanometers to 17 nanometers. And not only was the mutated capsid smaller, it also had a different geometry.

“It changed from looking like a soccer ball with a mix of hexagons and pentagons to just having pentagons,” Tullman-Ercek says. “With just one amino acid change at the protein level, the structure completely changed and is still completely stable.”

Tullman-Ercek’s collaborator at the University of California at Berkeley plans to test the smaller virus capsid for drug delivery and compare it to the performance of the same — but larger — version of the virus. In addition to drug delivery, Tullman-Ercek said the work also raises questions about virus evolution.

“If only one amino acid change can fundamentally change the structure, then viruses can be really flexible,” Tullman-Ercek says. “Maybe viruses started small and got larger over time, and that’s why it’s so easy for them to go back to being small. We don’t know, but it’s an interesting debate.”

Source: Northwestern University

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE