Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Special Scaffolds Make Meds Easier to Swallow

By A*STAR | October 21, 2016

The huge doses of drugs required to combat cancer could be reduced thanks to the work of A*STAR researchers, and the drugs themselves may become more effective. The researchers have developed a polymeric “scaffold” that helps drugs that often have trouble entering the bloodstream, such as anti-cancer agents, form highly stable nanoparticles with improved bioavailability.

Many medications that target tumor cells are made from water-repelling hydrocarbon molecules, which require extra processing or high doses rates to enter aqueous biological environments. A safer alternative is to “nanosize” pharmaceuticals into 10 to 1,000 nanometer particles using either mechanical grinding or special crystallization techniques. These extra-small medications easily slip into water and are effective against tumors, but it is hard to prevent them from agglomerating into larger precipitates with less potency.

Ulrike Wais and Alexander Jackson from the A*STAR Institute of Chemical and Engineering Sciences and Haifei Zhang at the University of Liverpool have developed a way to lessen agglomeration problems by using poly(ethylene glycol) and acrylamide (PEG-PNIPAM) — biocompatible polymers that are highly water soluble and can stabilize water-repelling molecules because they have similar surfactant-like hydrocarbon chains.

The team synthesized PEG-PNIPAM into “hyperbranched” spheres that are reinforced with short carbon cross-linking molecules. They then mixed the spheres with test drug compounds such as ibuprofen and blended them together to create an emulsion between the water-repelling and water-attracting components.

The next step required a way to freeze-dry the emulsion so it could be pulverized into nanoparticles, but this involved solving a tricky processing problem. “If phase separation occurs before the sample is completely frozen, drug crystals form that are neither nanosized nor stabilized against agglomeration by the scaffold,” explains Wais.

The researchers prevented phase separation during freeze-drying by ensuring the emulsification was extremely uniform before spraying it as tiny droplets into a pool of liquid nitrogen. Dynamic light scattering and scanning electron microscopy analysis of the solidified emulsion revealed that the drugs and polymer spheres had integrated into a porous, scaffold-like structure.

After mechanically grinding the freeze-dried emulsion into drug nanostructures, the researchers found their open framework made it simple to dissolve them into water. Furthermore, the drugs could be transformed into nanoparticles with yields of 100 percent using surprisingly low levels of PEG-PNIPAM spheres.

“The polymer structure and level of branching directly affect drug nanoparticle stabilization. This method gives us a way to investigate it systematically,” says Jackson. He notes that this method is synthetically straightforward and could be applied to a wide range of pharmaceuticals.

Source: A*STAR

Related Articles Read More >

professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
Health-related innovation in Morocco highlighted by resident inventor patenting activity
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE