Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Study: Ocean crust lavas could store many centuries of industrial carbon dioxide

By R&D Editors | December 4, 2013

Researchers from the Univ. of Southampton, U.K. have identified regions beneath the oceans where the igneous rocks of the upper ocean crust could safely store very large volumes of carbon dioxide.

The burning of fossil fuels such as coal, oil, and natural gas has led to dramatically increasing concentrations of CO2 in the atmosphere causing climate change and ocean acidification. Although technologies are being developed to capture CO2 at major sources such as power stations, this will only avoid further warming if that CO2 is then safely locked away from the atmosphere for centuries.

PhD student Chiara Marieni, who is based at the National Oceanography Centre, Southampton, investigated the physical properties of CO2 to develop global maps of the ocean floor to estimate where CO2 can be safely stored.

At high pressures and low temperatures, such as those in the deep oceans, CO2 occurs as a liquid that is denser than seawater. By estimating temperatures in the upper ocean crust, Chiara and her colleagues identified regions where it may be possible to stably store large volumes of CO2 in the basalts. These fractured rocks have high proportions of open space, and over time may also react with the CO2 so that it is locked into solid calcium carbonate, permanently preventing its release into the oceans or atmosphere. As a precaution, Chiara refined her locations to areas that have the additional protection of thick blankets of impermeable sediments to prevent gas escape.

They identified five potential regions in off-shore Australia, Japan, Siberia, South Africa and Bermuda, ranging in size from ½ million square kilometres to almost four million square kilometres.

Postgraduate researcher Chiara says: “We have found regions that have the potential to store decades to hundreds of years of industrial carbon dioxide emissions although the largest regions are far off shore. However, further work is needed in these regions to accurately measure local sediment conditions and sample the basalt beneath before this potential can be confirmed.”

The new work, which is published in Geophysical Research Letters, shows that previous studies, which concentrated on the effect of pressure to liquefy the CO2 but ignored temperature, have pointed to the wrong locations, where high temperatures mean that the CO2 will have a low density, and thus be more likely to escape.

Geological storage of CO2 within the oceanic crust by gravitational trapping

Source: Univ. of Southampton

Related Articles Read More >

AmazonFACE: Simulating the carbon future of the Amazon
R&D 100 winners predict disease risk on a continental scale
6 R&D advances this week: a quantum computer in space and a record-breaking lightning bolt
New design for bioplastics inspired by leaves increases tensile strength
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE