Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Study shows greater potential for solar power

By R&D Editors | June 23, 2014

Concentrating solar power (CSP) could supply a substantial amount of current energy demand, according to the study published in the journal Nature Climate Change. In the Mediterranean region, for example, the study shows that a connected CSP system could provide 70-80% of current electricity demand, at no extra cost compared to gas-fired power plants. That percentage is similar to what a standard energy production plant, such as a nuclear plant, can provide.

“Solar energy systems can satisfy much more of our hunger for electricity, at not much more cost than what we currently have,” says Stefan Pfenninger, who led the study while working at IIASA. He is now a Research Postgraduate at the Grantham Institute at Imperial College London.

The study was the first to examine the potential of CSP as a large-scale energy production system, in four regions around the world.

“In order to address climate change we need to greatly expand our use of renewable energy systems,” says IIASA researcher Fabian Wagner, who also worked on the study. “The key question, though, is how much energy renewable systems can actually deliver.”

One problem with deploying solar energy on a large scale is that the sun doesn’t shine all the time. That means that energy must be stored in some way. For photovoltaic (PV) cells, which convert sunlight directly to electricity, this is especially difficult to overcome, because electricity is difficult to store.

Unlike photovoltaic (PV) cells, CSP uses the sun’s energy to heat up a liquid that drives turbines. This means that the collected energy can be stored as heat, and converted to electricity only when needed. But even with CSP, if the sun doesn’t shine for long periods of time, the system may not be able to support large-scale energy needs.

One way to solve this problem is to build a large, connected network of CSP. Until now, however, nobody had explored the details and feasibility of such a plan.  In the new study, the researchers simulated the construction and operation of CSP systems in four regions around the world, taking into account weather variations, plant locations, electricity demand, and costs.

“Our study is the first to look closely at whether it’s possible to build a power system based primarily on solar energy, and still provide reliable electricity to consumers around the clock, every day of the year. We find this to be possible in two world regions, the Mediterranean basin and the Kalahari Desert of Southern Africa,” says study co-author Anthony Patt, Professor of Human-Environment Systems, ETH Zurich Department of Environmental Systems Science, and an IIASA guest research scholar.

Potential for concentrating solar power to provide baseload and dispatchable power

Source: International Institute for Applied Systems Analysis

 

Related Articles Read More >

Probiotics power a bioresorbable battery that can run from 4 to 100+ minutes
Korean engineers show off ultra-light prosthetic hand with single-motor thumb
2025 R&D layoffs tracker tops 92,000
Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE