Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

The Search for Fossil Fuel Replacements

By Julie Chao, Berkeley Lab | April 13, 2018

The average global energy consumption of transportation fuels is currently several terawatts (1 terawatt = 1012 Joule) per second. A major scientific gap for developing a solar fuels technology that could replace fossil resources with renewable ones is scalability at the unprecedented terawatts level. In fact, the only existing technology for making chemical compounds on the terawatt scale is natural photosynthesis.

The two reactions necessary to complete the photosynthetic cycle — CO2 reduction and H2O oxidation — take place in incompatible environments, so they have to be physically separated by a barrier. But, for the process to be efficient, the distance between the two should be as short as possible — on the nanometer scale. Natural photosynthetic systems accomplish this very well, but it presents an engineering challenge for fabricating artificial photosystems based on this design, explained Heinz Frei, a senior scientist in Biosciences’ Molecular Biophysics and Integrated Bioimaging (MBIB) Division.

Frei collaborated with Eran Edri, a former postdoctoral fellow in MBIB now at Ben-Gurion University, and Shaul Aloni at the Molecular Foundry, a DOE Office of Science User Facility. They developed a fabrication method to make a square-inch sized artificial photosystem, in the form of an inorganic core-shell nanotube array, that implements this design principle for the first time. “This achievement is made possible by the unique synergy of biophysical, chemical, and nanomaterials expertise of MBIB, thus contributing to the Division’s scientific advances towards solving a major national challenge in energy,” Frei says.

The method, described in a paper published earlier this year in ACS Nano, employs a silicon rod array as a template in combination with atomic layer deposition and cryo-etching techniques to provide control of the characteristic length scales of the components over eight orders of magnitude. While the array is fabricated on the macroscale, the diameter of individual tubes is a few hundreds of nanometers and the wall thickness a few tens of nanometers.

The inside surfaces of the cobalt oxide nanotubes provide the catalytic site for H2O oxidation, which are separated from the light absorber and sites of CO2 reduction on the outside by an ultrathin dense phase silica layer. The latter acts as a proton-conducting, O2-impermeable membrane. Somewhat surprising was the finding that, despite seemingly incompatible synthesis conditions, it was indeed possible to assemble a solid oxide-based nanoscale construct with embedded “soft” organic molecular wires for electron conduction and end up with all components intact, notes Frei.

The nanotube array provides a basis for the development of scalable engineered solar fuels systems suitable for deployment on abundant, non-arable land.

Source: Berkeley Lab

Related Articles Read More >

Researchers measure photovoltaic external quantum efficiency to transform the future of solar cells
U.S. DOE grants $25M to advance clean hydrogen technologies for electricity generation 
SOLiTHOR seeds $10.6M to develop a new solid-state battery cell technology
Powering the moon: Sandia researchers design microgrid for future lunar base
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars