Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

World’s Largest Diamond Foil Grown in Test Reactor

By Friedrich-Alexander-Universität | March 15, 2017

The size of a pizza: the world’s largest diamond foil. Image: FAU

Material researchers at Friedrich-Alexander-Universität (FAU) have come a step closer to their goal of providing large diamond foils for practical applications. In a test reactor, they have succeeded in producing the world’s largest diamond foil with a diameter of 28 centimeters. Diamond foils can be used as ultimate wear protection in industrial applications and for research into thermoelectric power generation — an emerging market. The researchers have recently published their findings on diamond foils in the acclaimed journals Philosophical Transactions A and Carbon.

Diamonds are not only considered valuable, but also virtually indestructible. They are one of the hardest natural materials in our universe. Consequently, it is not surprising that producing diamond foils has become a key area in materials science research, particularly as these layers feature extreme hardness and wear resistance, exceptional chemical inertness and maximum thermal conductivity. Unfortunately, coating substrates directly with crystalline diamond is only possible on a limited range of materials.

The research group, “Ultra Hard Coatings” at FAU’s Chair of Materials Science and Technology of Metals, has developed a process of growing diamond coatings on silicon substrates which can be used on materials which are not suitable for direct coating. They have now succeeded in producing the world’s largest diamond foil with a diameter of 28 centimeters. “By scaling up the manufacturing process, we have demonstrated that we can produce diamond foils in future as a semi-finished product for industry even in large dimensions,” explains Dr. Stefan Rosiwal, head of the Ultra Hard Coatings research group at the Chair of Materials Science and Technology of Metals. “In these diamond layers, we can adjust the diamond grain size, the electrical conductivity and thermal conductivity by varying the manufacturing parameters by many orders of magnitude.”

Over several days, the diamond foils are produced in a test reactor in which a 40-micrometer thick diamond layer — approximately the thickness of a human hair — is grown on a silicon disc with a diameter of 30 centimeters. The diamond foils are produced in a low-pressure atmosphere of hydrogen and two percent methane under wires which are heated to 2,000 degrees Celsius. After the coating process, a short pulse laser is used to introduce a circular fracture site with a diameter of 28.5 centimeters into the diamond surface. This makes it possible to separate the deposited layer as a very smooth diamond foil from the silicon substrate.

This procedure has opened up a whole new range of other possible applications. Virtually any substrate material can be coated with diamond film by means of a suitable joining technique. The extremely hard and smooth diamond foils can, for example, protect component surfaces against wear and tear. Research has already shown that diamond foils can give 100 percent protection for water turbines which are exposed to erosion from sand. Now that researchers have demonstrated diamond foil manufacturing processes successfully on a larger scale, this opens up opportunities for coating industrial components directly in a more cost effective way. Such industrial components include wear-resistant layers for mechanical seals in pumps as well as the production of stable diamond electrodes for highly efficient water purification and disinfection systems. These innovative diamond electrode systems are used for washing and disinfecting oranges after harvesting in southern Europe, removing putrefying bacteria from the surface of the fruit and saving up to 80 percent water. In the future, the technology could be used on container ships or sewage treatment plants. Diamond electrodes may even help in washing machines by keeping clothes clean and fresh at significantly lower temperatures.

Source: Friedrich-Alexander-Universität   

Related Articles Read More >

Google invests in fusion energy as the company’s energy use keeps climbing
Plastic converted into clean energy
New 10,000 square-foot plasma research center in Princeton, NJ
2025 R&D layoffs tracker hits 132,075 as Amazon CEO signals AI will cut more jobs
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE