Yorkshire gets £4 million ($6.3 million) electron lithography facility
One of the highest resolution electron-beam lithography systems in Europe will soon be helping scientists in Yorkshire break new ground in nanotechnology.
The state-of-the art system is to be installed at the University of Leeds, thanks to a £2.7 million grant from the Engineering and Physical Sciences Research Council (EPSRC), in partnership with the Universities of Sheffield and York. Its purchase is supported by additional strategic investment from the University of Leeds and industrial funding for PhD studentships, bringing the total investment in the facility to close to £4 million.
The instrument ? which will be unique in the region?is to be supplied by world-leading electron microscope manufacturer JEOL.
Electron-beam lithography systems are widely used by researchers to pattern wires, dots, rings and sophisticated integrated structures on a submicron length scale. The system that is coming to Leeds will able to define features that are less than 10 nanometres in size ? more than 1000 times smaller than the width of a human hair.
This will allow researchers to fabricate new generations of high frequency electronics and spintronic devices and to study novel magnetic materials, with the potential for commercialization over the next five to 10 years. The system will also enable researchers to fabricate electrodes that are small enough to connect to individual molecules or groups of molecules, leading to new classes of hybrid, bioelectronic materials that could have applications in medical diagnostics.
“This instrument will take us to the next level of sophistication in terms of nanoengineering,” said Professor Edmund Linfield, from the School of Electronic and Electrical Engineering, University of Leeds. “The system’s sub-10 nm resolution will really help us bridge the gap to molecular scale patterning. In short, it will allow us to undertake the fundamental scientific work that will underpin the next generation of materials that will emerge over the coming decades, and allow us to design devices that will find industrial applications from the electronic to the medical sectors. ”
“This prestigious collaboration will undoubtedly enhance the reputation of all involved,” said Steve Strange, Semiconductor Sales Manager for JEOL (UK). “For this project, the combination of exceptional academics in all three institutes, combined with the economic necessity of utilising our equipment 24/7 will showcase just how these collaborations are the future of high-end equipment procurement in the UK.”
Many projects have already been lined up for the new electron-beam lithography system. For example, researchers will examine how nanowires made from magnetic films can be used to trap ultra-cold atoms ? a technique that will help advance quantum computing applications.
They will also experiment with structures made from single-atom-thick sheets of carbon, a material known as graphene that has highly unusual electrical, mechanical and chemical properties and was the subject of this year’s Nobel Prize for physics. Their aim is to use the graphene sheets to make super-fast electrometers that can respond within a trillionth of a second.
Funding from JEOL will help young scientists at the beginning of their research careers take advantage of the new facility. Up to ten new PhD studentships specifically linked to the electron-beam lithography will be created over the next five years at the Universities of Leeds, Sheffield and York. It is expected that up to half of these will involve collaborative research with an industrial partner.
“The Universities of Leeds, York and Sheffield have an exceptionally strong international record of research in nanotechnology, but we must continue to invest in the latest facilities and infrastructure if we, and the UK, are to remain major players in the field,” said Professor Giles Davies, Pro-Dean for Research in the Faculty of Engineering, University of Leeds. “We must also make sure that up-and-coming young researchers are equipped with the skills they need to compete in an international scientific arena.”
Professor Kevin O’Grady, Director of the York Institute for Materials Research at the University of York, said: “This project was specifically designed to train a large group of PhD students to improve the skill base in Yorkshire. The three students based in York will work on projects in collaboration with Seagate, Toshiba and Hitachi.”
Dr Atsufumi Hirohata, of the Department of Electronics at York, added: “This instrument will allow me to make a multiple process spintronic device that will essentially be a full computer on a single chip.”
Dr Daniel Allwood, from the Department of Materials Science and Engineering at the University of Sheffield, said: “The excitement about this new collaborative facility is due to the future science that it enables. The world-class patterning capabilities will lead to a new understanding of nanoscale materials and innovations across a wide range of application areas.”
For further information:
Paula Gould, University of Leeds press office: Tel 0113 343 8059, email [email protected]
High-resolution images of nanoscale structures produced by one of JEOL’s state-of-the art electron-beam lithography system are available on request.
Notes for Editors
1. The 2008 Research Assessment Exercise showed the University of Leeds to be the UK’s eighth biggest research powerhouse. The University is one of the largest higher education institutions in the UK and a member of the Russell Group of research-intensive universities. The University’s vision is to secure a place among the world’s top 50 by 2015. www.leeds.ac.uk
The School of Electronic and Electrical Engineering at the University of Leeds is the top electronic and electrical engineering department in the UK (2008 Research Assessment Exercise); an impressive 80% of research activity is rated as internationally excellent or world leading. With 50 academic and research staff and 400 students, the School is a major player in the field of electronic and electrical engineering. www.engineering.leeds.ac.uk
The School of Physics and Astronomy has a long and distinguished history dating back before the University’s inception, over 100 years ago. It has over 30 members of academic staff including 10 professors, as well as 40 other postdoctoral staff and around 120 postgraduate students. There are typically 300 undergraduates on its degree programmes at any one time. www.physics.leeds.ac.uk
2. The Engineering and Physical Sciences Research Council (EPSRC) is the UK’s main agency for funding research in engineering and the physical sciences. The EPSRC invests around £850 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science.
3. JEOL (UK) Ltd is the UK arm of the world’s leading manufacturer of electron microscopes and lithography equipment associated with nanotechnology. Established for over 60 years, the company is one of the world’s leading suppliers of scientific equipment, offering sales, support and applications training for a wide variety of scanning electron microscopes, scanning probe microscopes, transmission electron microscopes, NMR spectrometers, ESR spectrometers, mass spectrometers, amino acid analysers and semiconductor process equipment.
4. The University of York was founded in 1963 with 200 students. It now has 12,000 students and over 30 academic departments and research centres. It is regularly ranked in the top ten of UK universities and is also in the world’s top 100 universities. York ranked eighth out of more than 120 UK universities in the 2008 Research Assessment Exercise.
The York Institute for Materials Research at the University of York has been developed to pursue world leading research into the manufacture, structure, properties and performance of a variety of modern 21st century functional materials with exciting new electronic, magnetic, optical biological and other properties. The Institute is interdisciplinary and involves the departments of Chemistry, Physics and Electronics. In addition York now has a world-leading facility (the York-Jeol Nanocentre) which can investigate materials and their behaviour at the atomic-scale. More than 40 interdisciplinary researchers are engaged in materials research.
5. With nearly 24,000 students from 131 countries, the University of Sheffield is one of the UK’s leading and largest universities. A member of the Russell Group, it has a reputation for world-class teaching and research excellence across a wide range of disciplines. The University has well-established partnerships with a number of universities and major corporations, both in the UK and abroad. Its partnership with Leeds and York Universities in the White Rose Consortium has a combined research power greater than that of either Oxford or Cambridge. www.sheffield.ac.uk