Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Better batteries from waste sulfur

By R&D Editors | April 15, 2013

A University of Arizona-led research team has discovered a simple process for making a new lightweight plastic from the inexpensive and abundant element sulfur. The petri dish on the left contains the plastic. The yellow powder on the right is sulfur. The team has already made a lithium-sulfur battery—the type of next- generation battery that is lighter and cheaper than those currently used in electric and hybrid cars. Image: Jared Griebel/ Pyun laboratory, University of ArizonaA new chemical process can transform waste sulfur into a lightweight plastic that may improve batteries for electric cars, reports a University of Arizona-led team. The new plastic has other potential uses, including optical uses.

The team has successfully used the new plastic to make lithium-sulfur batteries.

“We’ve developed a new, simple, and useful chemical process to convert sulfur into a useful plastic,” lead researcher Jeffrey Pyun says.

Next-generation lithium-sulfur, or Li-S, batteries will be better for electric and hybrid cars and for military uses because they are more efficient, lighter, and cheaper than those currently used, says Pyun, a UA associate professor of chemistry and biochemistry.

The new plastic has great promise as something that can be produced easily and inexpensively on an industrial scale, he says.

The team’s discovery could provide a new use for the sulfur left over when oil and natural gas are refined into cleaner-burning fuels.

Although there are some industrial uses for sulfur, the amount generated from refining fossil fuels far outstrips the current need for the element. Some oil refineries, such as those in Ft. McMurray in Alberta, are accumulating yellow mountains of waste sulfur.

“There’s so much of it we don’t know what to do with it,” says Pyun. He calls the left-over sulfur “the garbage of transportation.”

About one-half pound of sulfur is left over for every 19 gallons of gasoline produced from fossil fuels, calculates co-author Jared Griebel, a UA chemistry and biochemistry doctoral candidate.

The researchers have filed an international patent for their new chemical process and for the new polymeric electrode materials for Li-S batteries.

The team’s research article is published online in Nature Chemistry.

Pyun wanted to apply his expertise as a chemist to energy-related research. He knew about the world’s glut of elemental sulfur at fossil fuel refineries—so he focused on how chemistry could use the cheap sulfur to satisfy the need for good Li-S batteries.

He and his colleagues tried something new: transforming liquid sulfur into a useful plastic that eventually could be produced easily on an industrial scale.

Sulfur poses technical challenges. It doesn’t easily form the stable long chains of molecules, known as polymers, needed make a moldable plastic, and most materials don’t dissolve in sulfur.

Pyun and his colleagues identified the chemicals most likely to polymerize sulfur and girded themselves for the long process of testing those chemicals one by one by one. More than 20 chemicals were on the list.

They got lucky.

“The first one worked—and nothing else thereafter,” Pyun says.

Even though the first experiment worked, the scientists needed to try the other chemicals on their list to see if others worked better and to understand more about working with liquid sulfur.

They’ve dubbed their process “inverse vulcanization” because it requires mostly sulfur with a small amount of an additive. Vulcanization is the chemical process that makes rubber more durable by adding a small amount of sulfur to rubber.

The new plastic performs better in batteries than elemental sulfur, Pyun says, because batteries with cathodes made of elemental sulfur can be used and recharged only a limited number of times before they fail.

The new plastic has electrochemical properties superior to those of the elemental sulfur now used in Li-S batteries, the researchers report. The team’s batteries exhibited high specific capacity (823 mAh/g at 100 cycles) and enhanced capacity retention.

Several companies have expressed interest in the new plastic and the new battery, Pyun says.

The team’s next step is comparing properties of the new plastic to existing plastics and exploring other practical applications such as photonics for the new plastic.

Source: University of Arizona

Related Articles Read More >

First CRISPR-edited spider spins red fluorescent silk
KIST carbon nanotube supercapacitor holds capacity after 100,000 cycles
A new wave of metalworking lets semiconductor crystals bend and stretch
LLNL deposits quantum dots on corrugated IR chips in a single step
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE