Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Bioelectrochemical systems: Electricity generators of the future?

By R&D Editors | October 28, 2013

Billions of euros are spent treating trillions of liters of wastewater every year, consuming substantial amounts of energy. However, this wastewater could act as a renewable resource, saving significant quantities of energy and money, as it contains organic pollutants which can be used to produce electricity, hydrogen and high-value chemicals, such as caustic soda.

This can be achieved if the organic matter is broken down by electrically active bacteria in an electrochemical cell, which, at the same time, helps clean up the wastewater. Examples of such “bioelectrochemical systems” include microbial fuel cells (MFCs) and microbial electrolysis cells (MECs).

The EU is looking to encourage innovative projects that could lead to significant energy savings. One such initiative has been carried out by a team of researchers in Ireland, which focused on the field of bioelectrochemical systems and looked into how altering the chemistry of an electrode surface could produce more electricity.

The study “Arylamine functionalization of carbon anodes for improved microbial electrocatalysis”, funded through the Marie Curie Program, could have an immediate impact in a number of sectors looking to improve their environmental and energy performance, including wastewater treatment and biochemical and biofuel production.

The project began by examining the microbial-electrode interface. This is where complex physical-chemical and biological interactions permit microbes to exchange electrons with solid electrodes, to produce bioelectrochemical systems.

The team found evidence that could help microbial communities to connect to the electrode, and thus produce more electricity more rapidly compared to unmodified electrodes. Electron exchange is at the heart of reactions that occur in the natural world, as well as in these so-called bioelectrochemical systems.

The team introduced arylamine functional groups to graphite electrodes. Arylamine is an enzyme that catalyses a specific chemical reaction. The addition of this enzyme resulted in improved initial catalysis for acetate oxidation by microbial biofilms over that observed on unmodified anodes.

The researchers proved that ‘wiring’ microbes to conduct and produce electricity faster is feasible. The research was carried out by the Biomolecular Electronics Research Laboratory in Galway, Ireland, which has been working on probing conditions for selection of electrodes by microbes for several years.

Although further work is needed to understand important biological and engineering issues that underpin the biotechnology, these laboratory experiments have shown that bioelectrochemical systems can work. So far, however, only a few such pilot studies have been run in real-world conditions and more pilot studies and scaled-up demonstration projects are needed to prove the reliability of the systems.

In addition, costs have to be competitive with other wastewater treatment and chemical production processes before the biotechnology can be adopted on a commercial scale. However, researchers are optimistic that commercial installations could be realized in two to five years’ time, according to a recent European Commission briefing on the subject.

Source: CORDIS

Related Articles Read More >

New flexible plastic without ‘forever’ chemicals for wearable electronics
SandboxAQ’s SAIR dataset turns 5.2 M protein‑ligand structures into ground‑truth fuel for AI
Marine-biodegradable polymer is as strong as nylon
Unilever R&D head lifts lid on AI, robots and beating the ‘grease gap’
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE