Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Could Interstellar Ice Provide the Answer to Birth of DNA?

By University Of York | September 15, 2017

Researchers at the University of York have shown that molecules brought to earth in meteorite strikes could potentially be converted into the building blocks of DNA.

They found that organic compounds, called amino nitriles, the molecular precursors to amino acids, were able to use molecules present in interstellar ice to trigger the formation of the backbone molecule, 2-deoxy-D-ribose, of DNA.

It has long been assumed that amino acids were present on earth before DNA, and may have been responsible for the formation of one of the building blocks of DNA, but this new research throws fresh doubt on this theory.

Dr Paul Clarke, from the University of York’s Department of Chemistry, said: “The origin of important biological molecules is one of the key fundamental questions in science. The molecules that form the building blocks of DNA had to come from somewhere; either they were present on Earth when it formed or they came from space, hitting earth in a meteor shower.

“Scientists had already shown that there were particular molecules present in space that came to Earth in an ice comet; this made our team at York think about investigating whether they could be used to make one of the building blocks of DNA. If this was possible, then it could mean that a building block of DNA was present before amino acids.”

In order for cellular life to emerge and then evolve on earth, the fundamental building blocks of life needed to be synthesised from appropriate starting materials – a process sometimes described as ‘chemical evolution’.

The research team showed that amino nitriles could have been the catalyst for bringing together the interstellar molecules, formaldehyde, acetaldehyde, glycolaldehyde, before life on Earth began. Combined, these molecules produce carbohydrates, including 2-deoxy-D-ribose, the building blocks of DNA.

DNA is one of the most important molecules in living systems, yet the origin 2-deoxy-D-ribose, before life on earth began, has remained a mystery.

Dr Clarke said: “We have demonstrated that the interstellar building blocks formaldehyde, acetaldehyde and glycolaldehyde can be converted in ‘one-pot’ to biologically relevant carbohydrates – the ingredients for life.

“This research therefore outlines a plausible mechanism by which molecules present in interstellar space, brought to earth by meteorite strikes, could potentially be converted into 2-deoxy-D-ribose, a molecule vital for all living systems.”

Related Articles Read More >

Breakthrough in the Discovery of DNA in Ancient Bones Buried in Water
Traces of Crawling in Italian Cave Give Clues to Ancient Humans’ Social Behavior
Freshwater Mussel Shells Were Material of Choice For Prehistoric Craftsmen
Middle Pleistocene Human Skull Reveals Variation and Continuity in Early Asian Humans
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE