Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Imaging
    • Nanotechnology
    • Semiconductors
  • Controlled Environments
    • Cleanrooms
    • Graphene
    • Lasers
    • Regulations/Standards
    • Sensors
  • Scientific Computing
    • Big Data
    • HPC/Supercomputing
    • Informatics
    • Security
    • Software
  • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
    • R&D 100 Conference
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • 2020 Funding Forecast
  • COVID-19

Developing New Monomer Fluorescent Protein for SR Imaging

By Chinese Academy of Sciences Headquarters | August 26, 2016

Schema: Skylan-NS and live-cell SR imaging of actin structures. Credit: Institute of Biophysics (IBP), CAS

To understand the cell, it is necessary to study its dynamics at high resolution in space and time in a way that does not adversely affect it. Recently developed superresolution (SR) microscopy breaks the diffraction limit and offers the requisite spatial resolution but usually at the cost of slow imaging speed and excessive damage. Applying reversibly switchable fluorescent proteins (RSFPs) while using saturated depletion-based SR techniques, such as nonlinear structured illumination microscopy (SD NL-SIM) or reversible saturable optical fluorescence transition (RESOLFT) microscopy, greatly reduces the illumination intensity, thus enabling live-cell SR imaging.

However, one major challenge in live-cell SR is the absence of optimal fluorescent probes. Limited by the inherent optical properties of the existing switchable fluorescent proteins Dronpa and rsEGFP, such as the small number of switching cycles, low fluorescence signal, and poor contrast, it is difficult to achieve the desired resolution in live-cell SR imaging.

To circumvent the problem, Professor XU Pingyong at the Institute of Biophysics (IBP) of the Chinese Academy of Sciences recently developed a new type of monomer, RSFP Skylan-NS (sky lantern for nonlinear structured illumination).

Professor XU, in cooperation with Eric Betzig, a researcher and Nobel laureate at HHIM, and LI Dong, formerly a postdoctoral fellow under Dr. Betzig and now a professor at IBP, applied Skylan-NS to their previously developed SR imaging technique, patterned activation nonlinear SIM (PA NL-SIM) (Science, 2015).

PA NL-SIM is much more compatible with noninvasive live-cell imaging at a resolution below 100 nm than other SR modalities. This technique uses specific RSFPs, however, the properties that strongly influence their suitability for PA NL-SIM have not been enumerated, measured, and compared.

In their study, the researchers performed such a comparison, by evaluating the photophysical properties of Skylan-NS against two other RSFPs, i.e., rsEGFP2 and Dronpa, which have been used previously in the SR imaging modalities of RESOLFT and SD NL-SIM, respectively.

They further demonstrated the superiority of Skylan-NS for PA NL-SIM by comparing the imaging performance of all three RSFPs when applied to PA NL-SIM. For the first time, they achieved low-energy (100 W/cm2), high-sampling speed (sub-second level), high-resolution (~ 60 nm) and long-term (~30 point in time) super-resolution imaging in living cells. Due to its superiority in photostability, cycle numbers and signal-to-noise ratio, Skylan-NS is one of the best fluorescent proteins applicable to live-cell SR imaging.

The research work entitled Highly Photostable, Reversibly Photoswitchable Fluorescent Protein with High Contrast Ratio for Live-cell Superresolution Microscopy was published on line in the journal Proceedings of the National Academy of Sciences on August 23, 2016. The described fluorescent protein Skylan-NS enables substantial improvements in the speed, duration, and noninvasiveness of live-cell superresolution microscopy.

Related Articles Read More >

Berkeley Lab team introduces new approach for whole-cell visualization, using the world’s first soft X-ray tomography (SXT) microscope
What is hyperspectral image analysis?
R&D 100 winner of the day: VHX-7000 Digital Microscope
Engineers produce a fisheye lens that’s completely flat

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup
Tweets by @RandDWorld

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2020 Global Funding Forecast

Copyright © 2021 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Imaging
    • Nanotechnology
    • Semiconductors
  • Controlled Environments
    • Cleanrooms
    • Graphene
    • Lasers
    • Regulations/Standards
    • Sensors
  • Scientific Computing
    • Big Data
    • HPC/Supercomputing
    • Informatics
    • Security
    • Software
  • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
    • R&D 100 Conference
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • 2020 Funding Forecast
  • COVID-19