Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Discovery Could Lead to Smaller, Cheaper IoT Sensors

By National University of Singapore | November 14, 2018

NUS researchers invented a low-cost ‘battery-less’ wake-up timer that cuts power consumption of IoT sensor nodes by 1,000 times, contributing to long-lasting operation. The wake-up timer is embedded in a test chip, and placed in a larger package (held by both researchers) for easier testing and characterization.

Researchers from the Green IC research group at the National University of Singapore (NUS) have invented a low-cost ‘battery-less’ wake-up timer — in the form of an on-chip circuit — that significantly reduces power consumption of silicon chips for Internet of Things (IoT) sensor nodes.

The novel wake-up timer by the NUS team demonstrates for the first time the achievement of power consumption down to true picoWatt range (one billion times lower than a smartwatch).

“We have developed a novel wake-up timer that operates in the picoWatt range, and cuts power consumption of rarely-active IoT sensor nodes by 1,000 times. As an element of uniqueness, our wake-up timer does not need any additional circuitry, as opposed to conventional technologies, which require peripheral circuits consuming at least 1,000 times more power (e.g., voltage regulators).

“This is a major step towards accelerating the development of IoT infrastructure, and paves the way for the aggressive miniaturization of IoT devices for long-lasting operations,” said team leader Associate Professor Massimo Alioto from the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering.

The research was conducted in collaboration with Associate Professor Paolo Crovetti from the Politecnico di Torino in Italy.

IoT technologies, which will drive the realization of smart cities and smart living, often require the extensive deployment of smart, miniaturized silicon-chip sensors with very low power consumption and decades of battery lifetime, and this remains a major challenge to date.

IoT sensor nodes are individual miniaturized systems containing one or more sensors, as well as circuits for data processing, wireless communication and power management. To keep power consumption low, they are kept in the sleep mode most of the time, and wake-up timers are used to trigger the sensors to carry out a task.

As they are turned on most of the time, wake-up timers set the minimum power consumption of IoT sensor nodes. They also play a fundamental role in reducing the average power consumption of systems-on-chip.

The NUS invention substantially reduces power consumption of wake-up timers embedded in IoT sensor nodes.

“Under typical office lighting, our novel wake-up timer can be powered by a very small on-chip solar cell that has a diameter similar to that of a strand human hair. It can also be sustained by a millimeter scale battery for decades,” Alioto explains.

This technology breakthrough was made public at the 2018 Symposia on VLSI Technology and Circuits in Honolulu, Hawaii, the premier global forum where advances in solid-state circuits and systems-on-chip are presented.

The NUS team’s innovative picoWatt range wake-up timer has the unprecedented capability of operating without any voltage regulator due to its reduced sensitivity to supply voltage, thus suppressing the additional power that is conventionally consumed by such peripheral always-on circuits.

The wake-up timer can also continue operations even when battery is not available and under very scarce ambient power, as demonstrated by a miniaturized on-chip solar cell exposed to moon light.

In addition, the team’s wake-up timer can achieve slow and infrequent wake-up using a very small on-chip capacitor (half a picoFarad). This helps to significantly reduce silicon manufacturing costs due to the small area (40 micrometers on each side) required.

“Overall, this breakthrough is achieved through system-level simplicity via circuit innovation. We have demonstrated silicon chips with substantially lower power that will define the profile of next-generation IoT nodes. This will contribute towards realizing the ultimate vision of inexpensive, millimeter-scale and eventually, battery-less sensor nodes,” adds research team member Dr. Orazio Aiello, who is a Visiting Research Fellow at the Department.

The team is currently working on various low-cost, easy-to-integrate, energy-autonomous silicon systems with power consumption ranging from picoWatts to sub-nanoWatts. These critical sub-systems will make future battery-less sensors a reality, with the end goal of building a complete battery-less system-on-chip. This will be a major step towards the realization of the Smart Nation vision in Singapore and IoT vision worldwide.

Source: National University of Singapore

Related Articles Read More >

IoT
Sensor data, reimagined: When 90% less data can fuel 100x gains in efficiency in AI projects
Sandia Labs joins with other institutions to tackle AI energy challenges with microelectronics research
LG
Stretchable batteries and body-conformable electronics poised to advance in 2025
Critical Spaces Control Platform
Phoenix Critical Spaces Control Platform uses automation to direct airflow
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE