Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Engineer readies for rapid discovery of metallic glasses

By R&D Editors | November 4, 2014

Shown here are blow formed, bulk metallic glass samples.Yale Univ. engineer Jan Schroers will lead a three-year, $1.2 million project intended to dramatically accelerate the pace of discovering and characterizing bulk metallic glasses (BMGs), a versatile type of pliable glass that’s stronger than steel.

The grant, awarded as part of the National Science Foundation’s program for Designing Materials to Revolutionize and Engineer our Future, will enable Schroers’ team to screen more than 3,000 potential BMG alloys in a week, a vast improvement over traditional methods that take as much as a full day to identify a single alloy.

“With this project, we can bring materials discovery to a new level, reducing the time for identifying all possible BMG alloys from a projected 4,000 years to perhaps as little as four years,” said Schroers, a professor of mechanical engineering and materials science at the Yale School of Engineering & Applied Science.

The project will produce and characterize millions of potential BMGs, a significant increase over the 120,000 BMGs produced and characterized to date by traditional methods—just 100 of which are good glass formers. The key to this advancement, said Schroers, is the combination of three integrated computational and experimental techniques, each pioneered by a different team member.

First, Stefano Curtarolo of Duke Univ. will use combinatorial simulations to rapidly analyze the crystalline structures for thousands of potential alloys. Schroers will then examine the fabrication abilities of the best alloys identified by Curturaolo by simultaneously testing thousands of millimeter-size, controllably mixed alloys for their ability to generate bubble gum-like bubbles—a technique that indicates alloy pliability. Finally, Joost Vlassak of Harvard Univ. will rapidly characterize the best performing alloys using nanocalorimetry, a method that measures various thermal properties such as the melting and glass transition temperatures.

“There are strong arguments that metallic glasses are an ideal problem for this kind of combinatorial materials science because they are extremely complex, with up to six element alloys,” said Schroers, who added that the ideal plurality of properties for a BMG—reasonable costs, appropriate strength and toughness, corrosion resistance—has been extremely difficult to find using the slow trial-and-error of traditional methods.

“Currently, our most successful alloy is platinum-based, and it has everything except the price,” said Schroers. “We hope to find instead a copper- or aluminum-based alloy, which would effectively bring these very cool materials out of the lab and into everyday life.”

Source: Yale Univ.

Related Articles Read More >

New flexible plastic without ‘forever’ chemicals for wearable electronics
SandboxAQ’s SAIR dataset turns 5.2 M protein‑ligand structures into ground‑truth fuel for AI
Marine-biodegradable polymer is as strong as nylon
Unilever R&D head lifts lid on AI, robots and beating the ‘grease gap’
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE