MIT biological engineers have devised a way to record complex histories in the DNA of human cells, allowing them to retrieve “memories” of past events, such as inflammation, by sequencing the DNA.
This analog memory storage system—the first that can record the duration and/or intensity of events in human cells—could also help scientists study how cells differentiate into various tissues during embryonic development, how cells experience environmental conditions, and how they undergo genetic changes that lead to disease.
“To enable a deeper understanding of biology, we engineered human cells that are able to report on their own history based on genetically encoded recorders,” said Timothy Lu, an associate professor of electrical engineering and computer science, and of biological engineering. This technology should offer insights into how gene regulation and other events within cells contribute to disease and development, he adds.
Lu, who is head of the Synthetic Biology Group at MIT’s Research Laboratory of Electronics, is the senior author of the new study, which appears in the Aug. 18 online edition of Science. The paper’s lead authors are Samuel Perli SM ’10, PhD ’15 and graduate student Cheryl Cui.
Analog memory
Many scientists, including Lu, have devised ways to record digital information in living cells. Using enzymes called recombinases, they program cells to flip sections of their DNA when a particular event occurs, such as exposure to a particular chemical. However, that method reveals only whether the event occurred, not how much exposure there was or how long it lasted.
Lu and other researchers have previously devised ways to record that kind of analog information in bacteria, but until now, no one has achieved it in human cells.
The new MIT approach is based on the genome-editing system known as CRISPR, which consists of a DNA-cutting enzyme called Cas9 and a short RNA strand that guides the enzyme to a specific area of the genome, directing Cas9 where to make its cut.
CRISPR is widely used for gene editing, but the MIT team decided to adapt it for memory storage. In bacteria, where CRISPR originally evolved, the system records past viral infections so that cells can recognize and fight off invading viruses.
“We wanted to adapt the CRISPR system to store information in the human genome,” Perli said.