Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Even bacteria use social networks

By R&D Editors | July 22, 2013

This model shows the role of vesicles, vesicle chains and membrane tubes in M. xanthus biofilms. The scientists believe these connections help cells exchange signals and material. Image: Auer laboratoryThe next time your Facebook stream is filled with cat videos, think about Myxococcus xanthus. The single-cell soil bacterium also uses a social network. But forget silly distractions. M. xanthus relies on its connections to avoid getting eaten and to score its next meal.

That’s the latest insight from a team of Lawrence Berkeley National Laboratory scientists. Using several imaging techniques, they saw for the first time that M. xanthus cells are connected by a network of chain-like membranes.

The scientists believe M. xanthus uses its network to quietly transfer proteins and other molecules from one to another. This could enable the bacteria to coordinate social activities—such as evading bacterial enemies and snaring prey—without revealing its location.

“The network could be a mode of stealth communication,” says Manfred Auer of Berkeley Lab’s Life Sciences Div. “M. xanthus faces stiff competition and has a lot of enemies, so it pays to keep a low profile.”

Although the research focused on M. xanthus, it could shed light on how other bacteria work together to pull off important processes, such as breaking down plant material for biofuel production or cleaning up underground toxins. It could also lead to new antibiotics that stop harmful bacteria by knocking out their communication systems.

The work is published online in Environmental Microbiology.

Slice-through cryoelectron tomographic reconstruction of isolated vesicle chains reveals that each vesicle chain is made up of vesicles of a similar size. The scientists found that vesicle size can vary between different vesicle chains, suggesting a tight control of vesicle chain formation. Image: Auer laboratoryM. xanthus is already well known for its ability to self organize. Its highly coordinated behaviors include moving as a group and encircling its favorite foods, such as E. coli. This is a big part of what makes the bacteria so successful and ubiquitous. Pick up a handful of soil, and chances are you’re holding M. xanthus.

Scientists have long known that when M. xanthus cells glom together in a stable biofilm, the area surrounding the cells is packed with spherical organelles called vesicles. Scientists believed M. xanthus secretes these vesicles to communicate with one another. They thought the vesicles drift like messages in a bottle until other M. xanthus cells chance upon them.

But Auer and colleagues found that the vesicles form a much more targeted way of keeping in touch. They used a range of imaging techniques, including 3-D focused ion beam scanning electron microscopy, to study M. xanthus in a biofilm.

They saw that the bacteria send out chains of vesicles, like pearls strung together on a necklace. Some M. xanthus cells send out tubes made of vesicles. The chains and tubes connect every cell to several other cells. It’s a microscopic intranet.

“If M. xanthus simply shed chemical signals, then other bacteria would be able to detect it. But this network allows M. xanthus cells to only communicate with other M. xanthus cells,” says Auer.

These vesicle chains and tubes had never been seen before. In addition, previously observed connections between bacterial cells had been dismissed as artifacts of sample preparation. But the Berkeley Lab approach is almost artifact free because the samples are flash frozen before they’re imaged. And the cell-to-cell connections were seen via several imaging techniques such as cryoelectron microscopy and cryotomography.

There were more surprises. The scientists found that vesicle chains contain two proteins that are known to be transferrable from cell to cell when cells are touching. They think these proteins travel through the chains as cargo carriers. They also discovered that vesicle chain fractions have the ability to kill E. coli.

Next, the scientists want to study how the vesicle chains’ composition changes when M. xanthus interacts with foe versus food.

Source: Lawrence Berkeley National Laboratory

Related Articles Read More >

For the first time, scientists grow beating human-pig hearts for 21 days
Open-source Boltz-2 can speed binding-affinity predictions 1,000-fold
Thermo Fisher’s new Orbitrap Excedion Pro targets complex biotherapeutics for drug development
FDA’s new ‘Elsa’ AI set to expedite clinical protocol reviews
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE