Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Extent of moon’s giant volcanic eruption is revealed

By R&D Editors | March 18, 2015

Image shows the area around the Compton-Belkovich Volcanic complex (with the vertical scale enhanced for clarity). The red region (approximately 35 km in diameter) is the volcanic complex and the green area is that containing the radioactive debris from the volcano's eruption, which stretches 300 km to the east. Image: Jack Wilson et al/Durham Univ.Scientists have produced a new map of the moon’s most unusual volcano showing that its explosive eruption spread debris over an area much greater than previously thought.

A team of astronomers and geologists, led by experts in the Institute for Computational Cosmology and Dept. of Earth Sciences at Durham Univ., U.K., studied an area of the lunar surface in the Compton-Belkovich Volcanic Complex.

By mapping the radioactive element thorium which spewed out during the eruption they discovered that, with the help of the moon’s low gravity, debris from the unnamed volcano was able to cover an area the size of Scotland, or around 70,000 km2.

The eruption, which happened 3.5 billion years ago, threw rock five times further than the pyroclastic flow of molten rock and hot gases that buried the Roman city of Pompeii, the researchers added.

The research used data from NASA’s Lunar Prospector spacecraft which first spotted the volcanic site in 1999 when it detected an isolated deposit of thorium on the Moon’s far-side between the Compton and Belkovich impact craters.

Since its discovery, the deposit had been hard to study because it is hidden beneath debris from meteorite impacts, but Lunar Prospector did detect gamma rays emitted by the thorium that can pass through up to a meter of rock.

Based on this information, the Durham-led team used a “pixon” image enhancement technique, originally designed to peer into the distant universe, to sharpen the map and reveal the enormous size of the thorium deposit from the volcanic eruption.

Jack Wilson, a PhD student in Durham’s Institute for Computational Cosmology, said he was surprised by the gigantic scale of the explosion.

He said: “Volcanoes were common in the early life of the Moon and in fact the dark ‘seas’ you can observe on the lunar surface were created by runny, iron-rich, lava that flooded large areas, filling in impact craters and low-lying ground.

“Eruption of viscous, light-colored, iron-poor, lava, which creates steep-sided volcanic cones, was rare and observed only at a handful of sites such as this one. The explosive eruption of such lava is unknown elsewhere on the moon, making this volcano unique.

“By mapping the radioactive content of the lava from this volcano we have been able to show that molten, radioactive rock was thrown far beyond the slopes of the volcano, reaching several hundred miles in one direction.”

The research team is now planning to apply its mapping technique to the largest known volcano in the Solar system, Olympus Mons on Mars.

Rather than the radioactive element thorium, the researchers will be looking for hydrogen and the possible remnants of water ice from glaciers on the high slopes of the Red Planet.

Source: Durham Univ.

Related Articles Read More >

LLNL deposits quantum dots on corrugated IR chips in a single step
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
Physicists create supersolid state of light, blending properties of liquids and solids
Samson Shatashvili, winner of the 2025 Dannie Heineman Prize for Mathematical Physics
Samson Shatashvili awarded 2025 Heineman Prize for Mathematical Physics for quantum field theory advances
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE