Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Four photons entangled in orbital angular momentum

By R&D Editors | February 3, 2016

Physicists sent short ultraviolet laserpulses of two picoseconds through a crystal. This leads to the creation of four photons that are entangled in their orbital angular momentum — here depicted as red blue spirals. The rainbow colored circles illustrate the phase (color) and intensity (brightness) of the photon’s cross section. For the first time, scientists have entangled four photons in their orbital angular momentum. Leiden physicists sent a laser through a crystal, thereby creating four photons with coupled rotation. So far, this has only been done for two photons. The discovery makes uncrackable secret communication of complex information possible between multiple parties.

Entanglement holds a great promise, with applications in perfectly secret communication and quantum computing. If two photons are created simultaneously, they are each other’s counterpart, so that their rotation is always reversed with respect to the other. If we measure left rotation for one photon, then the other will always rotate to the right after measurement with a similar filter. This is called entanglement. Before the measurement, each photon’s rotation is undetermined.

Milestone

This rotation is a property of photons that scientists discovered in 1992 in Leiden; physicists call this orbital angular momentum. And this property has more than two values. It covers an infinitely large alphabet of information. So, with this you can transfer much more information per photon than with a property like polarization, which contains only two possible values. In 2001, scientists managed to entangle two photons in orbital angular momentum for the first time. Now, Leiden physicist Wolfgang Löffler and his colleagues are the first ones to entangle four photons in this way. They announce it in an Editor’s suggestion article in Physical Review Letters. The discovery offers many extra possibilities, like sending an uncrackable encrypted message to more than one party.

Experiment

During their successful experiment, the researchers sent short ultraviolet laser pulses of two picoseconds through a crystal. Occasionally, this leads to the creation of four entangled photons. This is extremely rare, but by generating 80 million pulses per second, they managed to detect on average two so-called photon quadruplets each second.

To confirm these were indeed entangled in orbital angular momentum, the team used a spatial phase modulator that converts this rotation back to light travelling as a plane wave. They registered this ‘normal’ light with single photon detectors.

Citation: Observation of four-photon orbital angular momentum entanglement, B. C. Hiesmayr, M, J. A. de Dood, W. Löffler, Physical Review Letters. Pre-print on Arxiv.

Source: Leiden Institute of Physics

Related Articles Read More >

LLNL deposits quantum dots on corrugated IR chips in a single step
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
Physicists create supersolid state of light, blending properties of liquids and solids
Samson Shatashvili, winner of the 2025 Dannie Heineman Prize for Mathematical Physics
Samson Shatashvili awarded 2025 Heineman Prize for Mathematical Physics for quantum field theory advances
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE