Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Graphene-Based Super Desiccant Eliminates the Stink

By Deborah Smith, University of New South Wales | May 31, 2018

University of New South Wales scientists have developed a new carbon-based material that could revolutionize moisture control in applications as diverse as electronics, packaging and air conditioning — and which could even be used to keep footwear fresh.

The new super desiccant, made from graphene oxide, significantly outperforms current drying agents, and is twice as absorbent as the industry standard, silica gel.

The material was developed by a team led by Dr. Rakesh Joshi of the UNSW School of Materials Science and Engineering, and a study outlining its performance in laboratory tests is published in the journal Chemical Science.

“This is a stable new material that shows significant gains in adsorption capacity over conventional desiccants,” says Joshi.

“One novel application we are investigating is the integration of the desiccant into inner soles of shoes to control odor and moisture. As the moisture could be released back into the atmosphere using an ordinary household device like a warm oven, shoes could be recharged regularly to keep them constantly fresh.”

The super desiccant is based on graphene — an extremely thin form of carbon — and is made of layers of graphene oxide. The researchers showed the material’s extraordinary adsorption and desorption rates were due to the high capillary pressure in the laminates and tunnel-like wrinkles on their surfaces — processes which had not previously been understood.

The project was conducted in collaboration with the computational materials design team of Professor Sean Smith, who was previously at UNSW and is now Director of Australia’s National Computational Infrastructure.

The researchers say the ability to fine-tune the spaces between the layers of graphene oxide as desired will allow the development of customized desiccants to control moisture across multiple applications.

“Simulations of the microscopic components of this breakthrough desiccant material reveal remarkable insights into how it works and will underpin the next stages of design and development,” says Smith, a world renowned scientist in developing theory.

The new desiccant can also discharge moisture at energy-saving low temperatures, enabling it to be easily used over and over again. By contrast, the heating required to regenerate conventional desiccants is often considered prohibitively expensive.

Study co-author, UNSW Scientia Professor Veena Sahajwalla, says: “This combination of high adsorption capacity and a rapid rate of absorption can significantly increase the efficiency of any desiccant system.

“Likewise, the relatively low temperatures at which discharge can be achieved offers significant advantages by greatly reducing the energy intensity required for regeneration.”

Source: University of New South Wales

Related Articles Read More >

The emerging materials shaping next-generation semiconductor electronics
24 R&D trends that redefined 2024
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 3: The sensor
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 2: The graphene context
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE