Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Graphene’s Properties Change in Humid Conditions

By Queen Mary University of London | January 23, 2019

Graphene exhibits very different properties in humid conditions, according to researchers from Queen Mary University of London.

The “wonder material,” which is made from carbon and was discovered in 2004, is hailed for many of its extraordinary characteristics including being stronger than steel, more conductive than copper, light, flexible and transparent.

This study, published in the journal Physical Review B, shows that in bi-layer graphene, which is two sheets of one atom thick carbon stacked together, water seeps between the layers in a humid environment.

The properties of graphene significantly depend on how these carbon layers interact with each other and when water enters in between it can modify the interaction.

The researchers found the water forms an atomically thin layer at 22 percent relative humidity and separates graphene layers at over 50 percent relative humidity.

This suggests that layered graphene could exhibit very different properties in a humid place such as Manchester, U.K., where average relative humidity is over 80 percent every month of the year, compared to a dry place such as Tucson, Arizona, where relative humidity is 13 percent on afternoons in May but rises to 65 percent on January mornings. So, in Tucson the properties will vary according to the time of the year.

Graphene, both layered and single layer, potentially has a huge number of uses but the results of this study could impact how the material can be used in real-life applications.

Lead author Dr. Yiwei Sun, from Queen Mary’s School of Engineering and Materials Science, said: “The critical points, 22 percent and 50 percent relative humidity, are very common conditions in daily life and these points can be easily crossed. Hence, many of the extraordinary properties of graphene could be modified by water in between graphene layers.”

He added: “Some graphene-based devices may function to their full capability in dry places while others may do so in humid places. We suggest all experiments on 2D materials should in future record the relative humidity.”

The researchers suggest humidity is also likely to have an impact on other layered materials such as boron nitride (sheets made of boron and nitrogen) and Molybdenum disulphide (sheets made of molybdenum and sulphur).

The study was carried out because it was known that graphite, a material also made from carbon, loses its excellent lubricating ability in low humidity conditions, such as aboard airplanes at high altitude, which was reported during the Second World War, or in outer space, as reported by NASA in the 1970s.

It was believed that the water in between layers of graphite is crucial to its behavior and now the same effect has been shown to affect layered graphene. 

Related Articles Read More >

The emerging materials shaping next-generation semiconductor electronics
24 R&D trends that redefined 2024
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 3: The sensor
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 2: The graphene context
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE