Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Hepatitis C Researchers Uncover Potential New Therapeutic Targets

By Monash University | May 10, 2017

An international study led by researchers at Monash University’ Biomedicine Discovery Institute (BDI) has shone light on the way the Hepatitis C Virus (HCV) hijacks the communication systems in the host cells it infects, uncovering potential new therapeutic targets for the disease.

HCV affects about two percent of the world’s population. Infection can lead to chronic hepatitis, which can progress to liver cirrhosis and carcinoma.

Importantly, the approach used by the scientists — which led to the identification of a drug-like molecule that stopped the virus from replicating within cells — may have broader application to other infectious diseases. This is because all intracellular pathogens rely on their host cell signalling system to replicate.

The study, published in Nature Communications on May 8, focused on protein kinases, enzymes that are key regulators of cellular processes. It built on previous ground-breaking work on malaria published in 2011 by author Monash Professor Christian Doerig, and others, who found that if host cell protein kinases were prevented from working it would kill malaria parasites.

The Monash BDI researchers worked in collaboration with Canadian-based company Kinexus, and used an antibody microarray to simultaneously investigate hundreds of factors involved in cell signalling that were modulated by HCV replication, including human protein kinases.

“This antibody microarray allowed us to find a number of new cell signalling pathways that were activated or suppressed by an HCV infection,” Professor Doerig said.

First author Dr Reza Haqshenas said the researchers then used gene silencing technology to determine whether the genes’ cell factors identified using the antibody microarray were indeed important for HCV replication and therefore potential targets for anti-HCV compounds.

They were then able to use a compound recently discovered by Harvard University investigator Professor Nathanael Gray to block the activity of one of the kinases important in HCV replication, MAP4K2.

“Nathanael sent us his new molecule, and we put it in our host cells, infected them with HCV and found that while the cells were fine, they didn’t support virus replication anymore,” Dr Reza Haqshenas said.

Professor Doerig said the study provided a compelling “proof of concept.”

“The platform we have established can be adopted to identify new anti-infective compounds against any pathogen including, viruses, bacteria and parasites, that invade mammalian cells,” he said.

“Importantly, fighting a pathogen by hitting an enzyme from the host cell is likely to slow the emergence of drug resistance, because the pathogen cannot easily escape through the selection of target mutations,” Professor Doerig said.

The researchers will now extend their work in studies on the Zika virus and toxoplasmosis.

Related Articles Read More >

Open-source Boltz-2 can speed binding-affinity predictions 1,000-fold
Thermo Fisher’s new Orbitrap Excedion Pro targets complex biotherapeutics for drug development
FDA’s new ‘Elsa’ AI set to expedite clinical protocol reviews
Waters touts six-fold robustness with new Xevo TQ Absolute XR
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE