Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

How Earth got its plated shell

By R&D Editors | April 7, 2014

New Yale Univ.-led research suggests how and when Earth came to develop one of its most distinct features—rigid tectonic plates—and why Venus, Earth’s twin-like neighbor, never has. Image: Walter MyersNew Yale Univ.-led research suggests how and when Earth came to develop one of its most distinct features—rigid tectonic plates—and why Venus, Earth’s twin-like neighbor, never has.

“We think it all comes down to the behavior of tiny grains of minerals within rocks,” said Yale geophysicist David Bercovici, lead author of research published online in Nature.

Earth has a unique network of shifting plates embedded in its cold and rocky outermost layer, the lithosphere. The motion of these plates drives many Earth processes, including earthquakes and volcanic eruptions, while also stabilizing the planet’s climate and enabling life.

Despite evidence that Earth’s solid surface was already in motion more than 4 billion years ago, global plate tectonics—replete with rigid plates and a variety of plate boundary types—appears not to have developed for a billion years more. And it never has on Venus, although the planet is so similar to Earth in size, composition and gravity that it’s sometimes called “Earth’s twin sister.”

Bercovici and co-author Yanick Ricard of the Univ. de Lyon in France argue that in Earth’s early days, mantle convection caused weak zones in the lithosphere. These zones persisted, developed into plate boundaries, and ultimately connected to form a global network of tectonic plates. The weak zones, they argue, resulted from the tendency of mineral grains in rocks to shrink as the rock deforms.

“If the rock gets weaker where it deforms, then deformation focuses there, making the grains shrink faster, in turn making the rock weaker,” Bercovici said. “The weak zone narrows and intensifies until you get a distinct boundary. These are the plate boundaries.”

This process does not happen on Venus, which has no plate visage, because its extremely high surface temperatures cause the grains to grow and weak zones to heal, he said.

To illustrate their hypothesis, the scientists developed a theoretical model that explains how rock grains control the strength and weakness in the lithosphere.

Said Bercovici, “The model uses physics at the 1-mm rock grain scale to explain how the whole planet behaves, and how plate tectonics emerged on Earth, but not on her twin.”

Source: Yale Univ.

Related Articles Read More >

COMSOL announces event series introducing Multiphysics Version 6.0
Look who’s turning 25: Z machine celebrates its colorful history at Sandia
Scientists create world’s thinnest magnet
LaserNetUS High-Power Laser Consortium, including Berkeley Lab, receives $18M from the U.S. DOE
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars