Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Inspur Launches GPU Deep Learning Appliance

By Inspur | November 21, 2016

Inspur announced the Inspur D1000 deep learning appliance at SC16. The D1000 is a total HPC solution enabled by NVIDIA Tesla GPU high-performance computing cluster technology and runs the Caffe-MPI parallel computing deep learning framework. The D1000 greatly enhances deep learning capability with applications for artificial intelligence fields such as facial recognition, picture classification, and object recognition.

Inspur also presented its 6-node design for the D1000 deep learning appliance. Inspur specifically developed this design for deep learning GPU servers. Each node is configured with two CPUs and four Tesla M40 GPUs.

“The D1000 solution yields a much stronger performance in comparison to others; it is able to meet the needs of most customers scalability and implementing deep learning solutions,” said Jay Zhang, Inspur Vice GM of ORH and Vice GM of American Region. “Inspur is committed to building a strong ecosystem for practical applications by partnering with industry leaders like NVIDIA to use the latest technology in implementing practical solutions.”

Caffe-MPI is an open source, clustered version of Caffe developed by Inspur, which enables Caffe, the industry’s leading deep learning framework, to achieve efficient multi-node parallel learning. Caffe-MPI not only achieves better computational efficiency in standalone multi-GPU solutions, but also supports distributed cluster expansion. As a deep learning platform, with 6-node, 24 Tesla M40 GPUs and Caffe-MPI, the D1000 can achieve the efficiency of 2,000 images per second when training the GoogLeNet, increasing the accuracy of the GoogLeNet network in as little as 18 hours to 78percent. With the increase of training time, Caffe-MPI’s accuracy will be further improved. Moreover, Caffe-MPI has good scalability and the node expansion efficiency can achieve 72percent. Caffe-MPI completely retains the user-friendly characteristics of the original Caffe architecture, with pure C++/ CUDA systems, programming support for the command line, Python, MATLAB, and other interfaces.

“Inspur provides customers with out of the box deep learning solutions and consistent service from beginning to end,” said Mr. Zhang. The Inspur D1000 provides easy operation of product deployment by integrating Inspur’s optimized high-performance computing cluster hardware, Caffe-MPI parallel computing framework and dependency library, fully tested OS and CUDA environment and Inspur ClusterEngine (which is a cluster management and dispatching platform). TheD1000 can achieve the integration of hardware and software in the production line installation and configuration.

Related Articles Read More >

NASA R&D 100 Winner enables high-speed data transfer from space
Lab automation is “vaporizing”: Why the hottest innovation is invisible
Google on how AI will extend researchers
Kythera Labs’ Wayfinder remasters incomplete medical data for AI analysis
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2025 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

R&D 100 Awards
Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2026 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE