Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Materials crystallize with surprising properties

By R&D Editors | May 13, 2015

Think about your favorite toys as a child. Did they light up or make funny noises when you touched them? Maybe they changed shape or texture. In ACS Central Science, researchers report a new material that combines many of these characteristics. Beyond being fun, these materials, called organic “supercooled” liquids, may be useful for optical storage systems and biomedical sensors.

Some materials, like ordinary table salt, are crystals. When most crystals are heated up and then cooled again, they recrystallize. A few others don’t quite snap back to their original well-ordered crystals when cooled but form amorphous supercooled liquids. For certain applications such as organic electronics and pharmaceutics, thermally stable amorphous organic materials are very important for device reliability and consistent efficacy. To better understand these processes, Jinsang Kim and colleagues investigated how modifications of molecular structure can provide unique thermal stability to molten organic liquid in a wide temperature range.

The researchers studied a chemical called DPP, which has been widely used in dyes and organic electronics applications. They found that when two balanced intermolecular interaction forces implemented in DPP molecules are working toward opposite directions, the DPP remains in a uniquely stable supercooled liquid state. Interestingly, a small “shear force” (getting rubbed) can break the force balance and induce rapid crystallization with a color change and bright “glow” under UV light. They say that their work has provided an understanding about molecular features that could be used to create thermally stable supercooled liquids.

Source: American Chemical Society

Related Articles Read More >

U.S.–China pause eases rare-earth shock risk, but supply security questions remain
Materials driving the next phase in semiconductor performance
An easier way to separate rare earth elements
ORNL named on 20 R&D 100 Awards, including carbon-capture and AM tools
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE