Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Microscopic sonic screwdriver invented

By R&D Editors | May 29, 2015

Microparticles are twisting in an acoustic vortex. Top row shows the experimental observations (0.5 micron particles) and the bottom row the predicted acoustic energy distribution. Image: Univ. of BristolA team of engineers have created tiny acoustic vortices and used them to grip and spin microscopic particles suspended in water.

The research by academics from the Univ. of Bristol’s Dept. of Mechanical Engineering and Northwestern Polytechnical Univ. in China, is published in Physical Review Letters.

The researchers have shown that acoustic vortices act like tornados of sound, causing microparticles to rotate and drawing them to the vortex core. Like a tornado, what happens to the particles depends strongly on their size.

Bruce Drinkwater, professor of ultrasonics in the Dept. of Mechanical Engineering and one of the authors of the study, said: “We have now shown that these vortices can rotate microparticles, which opens up potential applications such as the creation of microscopic centrifuges for biological cell sorting or small-scale, low-power water purification.

“If the large-scale acoustic vortex devices were thought of as sonic screwdrivers, we have invented the watchmakers sonic screwdriver.”

The research team used a number of tiny ultra-sonic loudspeakers arranged in a circle to create the swirling sound waves. They found that when a mixture of small microparticles (less than 1 micron) and water were introduced they rotated slowly about the vortex core. However, larger microparticles (household flour) were drawn into the core and were seen to spin at high speeds or become stuck in a series of circular rings due to acoustic radiation forces.

Dr. ZhenYu Hong, of the Dept. of Applied Physics at Northwestern Polytechnical Univ. in China, added: “Previously researchers have shown that much larger objects, centimeters in scale, could be rotated with acoustic vortices, proving that they carry rotational momentum.”

Source: Univ. of Bristol

Related Articles Read More >

COMSOL announces event series introducing Multiphysics Version 6.0
Look who’s turning 25: Z machine celebrates its colorful history at Sandia
Scientists create world’s thinnest magnet
LaserNetUS High-Power Laser Consortium, including Berkeley Lab, receives $18M from the U.S. DOE
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars