Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Nanomachines Can Diagnose Illness

By Iowa State University | June 28, 2016

Imagine you want to build an intricate work of architecture, like a castle.

Now imagine that, once all its individual components are brought together, the castle builds itself automatically. Finally, imagine this castle is so small that it’s measured on the same scale as DNA, viruses, and small molecules.

You’ve just entered the nanoscale world where Eric Henderson lives. And if this sounds like magic to you, maybe you’re not far off the mark.

“It’s the magic of how DNA works,” says Henderson, a professor of genetics, development, and cell biology at Iowa State University.

Henderson, along with his former graduate student Divita Mathur, studies how to build nanomachines that may have real-world medical applications someday soon. He and Mathur recently published an article in the peer-reviewed Scientific Reports describing his laboratory’s successful effort to design a nanomachine capable of detecting a mockup of the Ebola virus.

He says such a machine would prove valuable in the developing world, where access to diagnostic medical equipment can be rare. He says his nanotechnology could be fabricated cheaply and deployed easily. Used in conjunction with a smartphone app, nearly anyone could use the technology to detect Ebola or any number of other diseases and pathogens without the need for traditional medical facilities.

The trick lies in understanding the rules that govern how DNA works, Henderson says.

“It’s possible to exploit that rule set in a way that creates advantages for medicine and biotechnology,” he says.

The iconic double-helix structure of DNA means that one strand of DNA will bind only with a complementary side. Even better, those compatible strands find each other automatically, like a castle that builds itself. Henderson harnessed those same principles for his nanomachines. The components, once added to water and then heated and cooled, find each other and assemble correctly without any further effort from the individual deploying the machines.

And just how “nano” is a nanomachine? Henderson says about 40 billion individual machines fit in a single drop of water.

The machines act as a diagnostic tool that detects certain maladies at the genetic level. For the recently published paper, Henderson and Mathur, now a postdoctoral research fellow at the Center for Biomolecular Science and Engineering at the Naval Research Laboratory in Washington, D.C., designed the machines to look for signs of Ebola, though the experiments in the study used a mock version of the viral genome and not the real thing. Henderson employed an embedded photonic system that tests for the presence of the target molecules. If the machines sniff out what they’re looking for, the photonic system flashes a light, which can be detected with a machine called a fluorometer.

Henderson says this sort of technology could be modified to find certain kinds of molecules or pathogens, allowing for virtually anyone, anywhere to run diagnostic tests without access to medical facilities.

He also envisions a time when similar nanoscale architectures could be used to deliver medication precisely where it needs to go at precisely the right time. These nanomachines, built from DNA, essentially would encapsulate the medication and guide it to its target.

Henderson says such advances aren’t that far beyond the reach of modern medicine. It just requires scientists in the field to think small. Really small, in this case.

Source: Iowa State University

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE