Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

New mechanism unlocked for evolution of green fluorescent protein

By R&D Editors | January 28, 2015

Arizona State Univ. scientists show, for the first time, that a hinge migration mechanism, driven solely by long-range dynamic motions, can be the key for evolution of green to red phenotype in a green fluorescent protein. Image: Rebekka WachterA primary challenge in the biosciences is to understand the way major evolutionary changes in nature are accomplished. Sometimes the route turns out to be very simple. An example of such simplicity is provided in a new publication by a group of Arizona State Univ. (ASU) scientists.

They show, for the first time, that a hinge migration mechanism, driven solely by long-range dynamic motions, can be the key for evolution of a green-to-red photoconvertible phenotype in a green fluorescent protein (GFP).

Rebekka Wachter, a professor in ASU’s Dept. of Chemistry and Biochemistry and the College of Liberal Arts and Sciences, is an expert in the field of structural characterization of GFP-like proteins. The present study is the culmination of eight years of intense effort in her laboratory.

The work, just published in Structure, involves collaborations with S. Banu Ozkan, from the Center for Biological Physics in the Dept. of Physics at ASU, and evolutionary biologist Mikhail Matz of the Univ. of Texas.


Green fluorescent protein was first isolated from the jellyfish Aequorea victoria, which drifts with the currents off the west coast of North America. It was discovered that this protein glowed bright green under ultraviolet light. This phenomenon has found many creative applications in the biosciences.


The protein has been utilized as an extremely valuable luminous genetic tag for various biological phenomena. Using green fluorescent protein one can observe when proteins are made and where they go. This is done by joining the GFP gene to the gene of the protein of interest so that when the protein is made it will have GFP hanging off it. Since GFP fluoresces, one can shine light at the cell and wait for the distinctive green fluorescence associated with GFP to appear. The ability of some GFPs to turn red upon prolonged illumination makes them invaluable probes in super resolution fluorescence microscopy applications. This is where the current study is of most value.

To fluoresce, GFP-like proteins must adopt a compact barrel-like shape.  The light-triggered red phenotype may have arisen from a common green ancestor by a reversal of firm and soft regions located in opposite corners of the beta-barrel fold.

Although six crystal structures of reconstructed ancestral Kaede-type proteins indicate that the structure is highly conserved, analysis of chain flexibility by Molecular Dynamics and perturbation response scanning, performed in the group of S. Banu Ozkan has shown that the individual flexibility of each position (i.e. structural dynamics) alters throughout the evolution of green-to-red photo conversion. Thus this study suggests that green-to-red photoconversion may have arisen from a common green ancestor by the shift of the rigid corner near  the chromophore to the opposite corner of beta-barrel.

“For the first time, this work establishes a direct experimental link between protein phenotypic change and collective dynamics without any external trigger, such as substrate, product or effector binding,” explains Wachter. “Based on structural, computational and kinetic data, we propose a novel photoconversion mechanism that provides a plausible path for the irreversible acquisition of red fluorescence.”

In spite of intense efforts in a number of laboratories worldwide, the mechanism of photoconversion of Kaede-type proteins has remained largely enigmatic. The present work sheds light on structural, dynamic and mechanistic features that must be considered when engineering improved fluorescent probes for super-resolution microscopy applications.

Source: Arizona State Univ.

Related Articles Read More >

Breakthrough in the Discovery of DNA in Ancient Bones Buried in Water
Traces of Crawling in Italian Cave Give Clues to Ancient Humans’ Social Behavior
Freshwater Mussel Shells Were Material of Choice For Prehistoric Craftsmen
Middle Pleistocene Human Skull Reveals Variation and Continuity in Early Asian Humans
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE