Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Particles Collected by Hayabusa Give Absolute Age of Asteroid Itokawa

By Osaka University | August 27, 2018

This is the cross section area of the particle collected from the asteroid Itokawa using Hayabusa spacecraft. Credit: Osaka University

Understanding the origin and time evolution of near-Earth asteroids (NEAs) is an issue of scientific interest and practical importance because they are potentially hazardous to the Earth. However, when and how these NEAs were formed and what they suffered during their lifetime remain enigmas.

Japanese scientists, including those from Osaka University, closely examined particles collected from the asteroid Itokawa by the spacecraft Hayabusa, finding that the parent body of Itokawa was formed about 4.6 billion years ago when the solar system was born and that it was destroyed by a collision with another asteroid about 1.5 billion years ago. Their research results were published in Scientific Reports.

Focusing on a few micrometers of phosphate minerals, which are rarely found in Itokawa particles, the scientists performed precise isotope analyses of uranium (U) and lead (Pb) in Itokawa particles of about 50 μm in diameter using Secondary Ion Mass Spectrometry (SIMS).

Lead author Kentaro Terada says, “By combining two U decay series, 238U-206Pb (with a half-life of 4.47 billion years) and 235U-207Pb (with a half-life of 700 million years), using four Itokawa particles, we clarified that phosphate minerals crystalized during a thermal metamorphism age (4.64±0.18 billion years ago) of Itokawa’s parent body, experiencing shock metamorphism due to a catastrophic impact event by another body 1.51±0.85 billion years ago.”

It has been reported that the mineralogy and geochemistry of the Itokawa particles resemble those of LL (LL stands for Low (total) iron, Low metal) chondrites, which frequently fall to the Earth.

However, the shock ages of Itokawa particles obtained from this study (1.5 billion years ago) are different from previously reported shock ages of shocked LL chondrites (4.2 billion years ago). This shows that the asteroid Itokawa had a time evolution different from that of the parent body of LL chondrites.

The results of this study established constraints on the timescale of the first samples collected from the asteroid, providing concrete figures (absolute age) to the evolution of the NEAs whose orbits are well known. This will lead to the elucidation of the origins and histories of asteroids.

Related Articles Read More >

2025 R&D layoffs tracker: 83,543 and counting
U.S. Space Force invests $13.7 billion in next-gen launch vehicles from SpaceX, ULA, and Blue Origin
EL SEGUNDO, CA/USA - OCTOBER 13, 2014: Boeing manufactuing facility. Boeing manufactures and sells aircraft, rotorcraft, rockets and satellites. It is the second-largest defense contractor in the world.
8 major R&D moves this week: HHS cuts 10,000 jobs while Anthropic & DataBricks form $100M pact
Breathing easier on the moon: NASA and Corscience team up to monitor spacesuit safety
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE