Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Pathway found for membrane building blocks

By R&D Editors | January 30, 2013

With the corkscrew-shaped peptide binding a lipid molecule, the newly formed phospholipid can slip through the first membrane layer into the second. Image: D. Langosch et al., Chemistry & BiologyBiomembranes consist of a mosaic of individual, densely packed lipid molecules. These molecules are formed inside the cells. But how do these building blocks move to the correct part of the membrane? Researchers from Technische Universität München (TUM) have discovered a mechanism to show how this is done.
   
The lipid molecules of membranes, also known as phospholipids, are composed of two elements: A hydrophilic head and two long-chain fatty acids. The molecules form a bilayer in the membrane, with all of the heads pointing outwards and the fatty acid chains hanging in a zip-like interlay position.

Biomembranes are constantly reorganized or renewed, for example whenever cells divide. The cell is constantly creating new phospholipids that have to align themselves—which they do in both layers of the biomembrane. However, cells only produce phospholipids on one side of the biomembrane. From there, they need to be transported to the other half of the bilayer.

A helping hand through the membrane
The problem is that the hydrophilic and lipophilic parts of the molecule repel each other. “The molecules can anchor themselves in one of the two membrane layers with their lipophilic tail,” explains Prof. Dieter Langosch of the TUM Chair of Biopolymer Chemistry. “Translocation to the second layer is not possible because the hydrophilic heads cannot pass through the lipophilic fatty acid chains.”

The key to establishing order in the membranes lies in enzymes that transport the molecules to their correct location in the “second layer”. Scientists have been searching for such enzymes—known as flippases—for many years. But now Prof. Langosch and his team have made a breakthrough. They experimented with synthetic peptides, which transport phospholipids through the membrane.

A clever trick
In this process, the researchers came across an indirect transport mechanism. The peptides span both layers of the membrane—and are able to bind to individual phospholipids. Langosch explains: “When the peptides bind the molecules, the surrounding membrane is briefly destabilized. The new phospholipids use this opportunity to slip through the barrier of the first lipid layer and flip to the second layer of the membrane.”

The researchers now have a clear idea of how flippases work. “Our peptides stretch through the membrane like a corkscrew. If this “alpha-helix” has dynamic elements, it can bind to phospholipids,” says Langosch. “This model will help us to detect the flippases.”

Structural Properties of Model Phosphatidylcholine Flippases

Source: Munich Technical University

Related Articles Read More >

Nature’s 2024 Method of the Year has become $100M market and a lawsuit magnet
New study finds gene that can help repair the heart after failure
Verily integrates NVIDIA AI tools into precision health platform
Are AI agents skipping the trough? Early evidence from life sciences
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE