Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Printing 3-D graphene structures for tissue engineering

By R&D Editors | May 20, 2015

Ever since single-layer graphene burst onto the science scene in 2004, the possibilities for the promising material have seemed nearly endless. With its high electrical conductivity, ability to store energy, and ultra-strong and lightweight structure, graphene has potential for many applications in electronics, energy, the environment and even medicine.

Now a team of Northwestern Univ. researchers has found a way to print 3-D structures with graphene nanoflakes. The fast and efficient method could open up new opportunities for using graphene printed scaffolds regenerative engineering and other electronic or medical applications.

Led by Ramille Shah, assistant professor of materials science and engineering at the McCormick School of Engineering and of surgery in the Feinberg School of Medicine, and her postdoctoral fellow Adam Jakus, the team developed a novel graphene-based ink that can be used to print large, robust 3-D structures.

“People have tried to print graphene before,” Shah said. “But it’s been a mostly polymer composite with graphene making up less than 20% of the volume.”

With a volume so meager, those inks are unable to maintain many of graphene’s celebrated properties. But adding higher volumes of graphene flakes to the mix in these ink systems typically results in printed structures too brittle and fragile to manipulate. Shah’s ink is the best of both worlds. At 60 to 70% graphene, it preserves the material’s unique properties, including its electrical conductivity. And it’s flexible and robust enough to print robust macroscopic structures. The ink’s secret lies in its formulation: the graphene flakes are mixed with a biocompatible elastomer and quickly evaporating solvents.

“It’s a liquid ink,” Shah explained. “After the ink is extruded, one of the solvents in the system evaporates right away, causing the structure to solidify nearly instantly. The presence of the other solvents and the interaction with the specific polymer binder chosen also has a significant contribution to its resulting flexibility and properties. Because it holds its shape, we are able to build larger, well-defined objects.”

Supported by a Google Gift and a McCormick Research Catalyst Award, the research is described in ACS Nano. Jakus is the paper’s first author. Mark Hersam, the Bette and Neison Harris Chair in Teaching Excellence, professor of materials science and engineering at McCormick, served as coauthor.

An expert in biomaterials, Shah said 3-D printed graphene scaffolds could play a role in tissue engineering and regenerative medicine as well as in electronic devices. Her team populated one of the scaffolds with stem cells to surprising results. Not only did the cells survive, they divided, proliferated, and morphed into neuron-like cells.

“That’s without any additional growth factors or signaling that people usually have to use to induce differentiation into neuron-like cells,” Shah said. “If we could just use a material without needing to incorporate other more expensive or complex agents, that would be ideal.”

The printed graphene structure is also flexible and strong enough to be easily sutured to existing tissues, so it could be used for biodegradable sensors and medical implants. Shah said the biocompatible elastomer and graphene’s electrical conductivity most likely contributed to the scaffold’s biological success.

“Cells conduct electricity inherently—especially neurons,” Shah said. “So if they’re on a substrate that can help conduct that signal, they’re able to communicate over wider distances.”

The graphene-based ink directly follows work that Shah and her graduate student Alexandra Rutz completed earlier in the year to develop more cell-compatible, water-based, printable gels. As chronicled in a paper published in Advanced Materials, Shah’s team developed 30 printable bioink formulations, all of which are compatible materials for tissues and organs. These inks can print 3-D structures that could potentially act as the starting point for more complex organs.

“There are many different tissue types, so we need many types of inks,” Shah said. “We’ve expanded that biomaterial tool box to be able to optimize more mimetic engineered tissue constructs using 3-D printing.”

Source: Northwestern Univ.

Related Articles Read More >

First CRISPR-edited spider spins red fluorescent silk
KIST carbon nanotube supercapacitor holds capacity after 100,000 cycles
A new wave of metalworking lets semiconductor crystals bend and stretch
LLNL deposits quantum dots on corrugated IR chips in a single step
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE