Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Researchers Obtain Decacene, the Largest Acene Synthesized Ever

By Technische Universität Dresden | August 15, 2017

This is a single decacene molecule under a Scanning Tunneling Microscope. Credit: TU Dresden

Acenes are molecules formed by the linear fusion of special carbon-based hexagons, widely known as ‘benzene rings.’ In spite of its structural simplicity, these molecules have attracted huge attention due to their unique electronic properties; pentacene, for example, a member of this family with five linear rings, is considered as one of the most relevant organic semiconductor to build photoelectronic devices, while larger acenes present intriguing properties that have fascinated scientists for decades. However, long acenes are unstable molecules, which cannot be found in natural sources. The obvious alternative is to access these molecules by chemical synthesis, but this approach becomes more challenging as the length of the molecule increases. In fact, nonacene (nine rings linearly fused) was the largest acene detected to date in 2010.

In a new paper that has just been published online in the International Edition of Angewandte Chemie, scientists from the Institute for Materials Science and Center for Advancing Electronics at Technische Universität of Dresden – TUD (Chair of Prof. Gianaurelio Cuniberti) and the research center CiQUS (University of Santiago de Compostela) have been able to generate elusive decacene, a molecule formed by the linear fusion of ten benzene rings, the longest acene prepared ever. Throughout this research collaboration, led by professors Francesca Moresco (TUD) and Diego Peña (CiQUS), chemists from CiQUS prepared stable decacene precursors by solution chemistry, while physicists from TUD used these precursors to prepare decacene on a gold surface under ultra-high vacuum, in order to stabilise this extremely reactive compound. As a result, individual decacene molecules were visualised by high-resolution Scanning Tunneling Microscopy (STM).

A Feat of Collaborative European Research
The outcome of this work demonstrates that collaborations between synthetic chemists and surface scientists can lead to the achievement of long-standing chemical challenges, as evidenced by this research. The study has been developed in the framework of the EU Project PAMS, oriented to the fabrication of nanosized electronic devices (Planar Atomic and Molecular Scale devices), and scientists involved have dedicated it to the memory of Prof Erich Clar, who is widely-considered a pioneer in the field of acene chemistry.

SOURCE: Technische Universität Dresden

Related Articles Read More >

TSMC’s N3P hits mass production, with N3X customer sampling slated for Q3–Q4 2025a
7 major R&D developments this week: Tariff uncertainty persists, Pfizer sells campus, Scania acquires Northvolt unit
While Trump tariffs spare phones/PCs, R&D could faces GPU cost pressures
Why IBM predicts quantum advantage within two years
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE