Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Simple wavelength detector could speed data communications

By R&D Editors | June 5, 2013

Three different-colored lasers are depicted converging on the gold top surface of a simple three-layer solid-state device that can determine light wavelengths. The intense light creates "hot" electrons that have enough energy to travel through a thin insulator (gray) into the conducting electrode (red) below. The level of opposing voltage sufficient to stop the hot-electron current indicates the light's wavelength. The SLAC and Stanford scientists who created this structure correctly decoded the modulated signals from three different lasers. Image: Fuming WangResearchers at SLAC National Accelerator Laboratory and Stanford Univ. have created a new device, smaller than a grain of rice, that could streamline optical data communications. It can directly identify the wavelength of light that hits it, and should scale down to the even tinier dimensions needed for multichannel optical data receivers on future generations of computer chips.

The device came out of a solar energy experiment conducted two years ago by Nicholas Melosh, a researcher with the Stanford Institute for Materials and Energy Sciences, a joint SLAC/Stanford institute, and graduate student Fuming Wang. They were testing how a layered thin-film chip generated electrons from the sun’s light and heat when they noticed that different wavelengths of light produced electrons with correspondingly different energies and electrical signatures.

This discovery led them to develop a new version of the chip, which has just three nanometer-scale layers: two metal electrodes (gold and titanium) sandwiching an insulating layer of titanium dioxide. Wang and Melosh reported their results in Nature Communications.

“Other wavelength detectors are either power dependent and must be used with reference measurements or use either a prism or grating, which spreads out the light, or wavelength-selective filters, both of which would be cumbersome on a chip,” Melosh says. “This is a new phenomenon.”

The new device is sensitive to all visible light as well as to part of the infrared spectrum. It works best with monochromatic light, which has a single, distinct wavelength, but was also able to correctly decode three overlapping signals from three different-colored lasers that were shined simultaneously onto the device.

Melosh says a key part of the design was matching the thickness of the top electrode to the distance that light-generated “hot” electrons would travel through that material, which for gold is 50 nanometers. Thus a large fraction of the hot electrons reach the sandwiched titanium oxide layer, which they pass through due to their high energy. The laser’s wavelength is identified by applying an opposing voltage sufficient to stop the hot-electron current. That voltage depends only on the light’s wavelength; the light’s intensity does not affect the measurement.

Melosh says the next steps are to make very small pixels, on the order of 100 nanometers square, into an array that can detect many wavelengths at once, and to tune the materials so they transfer electrons more efficiently with sensitivity over an even wider range of wavelengths, especially near commercial telecommunications wavelengths at 1,500 nanometers.

Source: SLAC National Accelerator Laboratory

Related Articles Read More >

Caltech, Fermilab, and collaborators test quantum sensors for future particle physics experiments
2025 R&D layoffs tracker: 83,543 and counting
NSF layoffs in 2025: Deep budget cuts headed for U.S. research sector
GMT141_01_19_Bob Hines_1037_Boeing Starliner Arrival
Newly revealed details on Boeing Starliner’s mission highlight systemic engineering challenges
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE