Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Turning up the heat on antibacterial-resistant diseases

By Heather Hall | January 30, 2020

Scientists at Berkeley Lab’s Molecular Foundry have made a biocompatible material that has potential use in medical therapies that deploy near-infrared light to combat antibacterial-resistant infections and cancer. (Credit: Sirirat/Shutterstock.com)

Photothermal therapy (PTT)–a proposed treatment for diseases such as antibacterial-resistant infections and cancer–makes use of a chemical agent that absorbs the light of an infrared laser and dissipates that energy as local heat capable of killing cells, including cancer cells. But most of the chemical agents used for PTT are toxic to human cells and thus not useful for medical therapies.
A potential alternative to conventional PTT agents are ionic (or charged), biocompatible polymers called conjugated polyelectrolytes (CPEs) – but they rarely absorb light in the near-infrared (NIR) range, where it is most desirable for PTT.
Now, as reported in the journalAngewandte Chemie, scientists at Berkeley Lab’s Molecular Foundry have demonstrated the first CPE polymer that can tune PTT to this range of light.
The research team, led byYi Liu, director of the organic and macromolecular synthesis facility at the Molecular Foundry, synthesized the polymer by stringing together small molecules called ionic azaquinodimethanes (iAQMs), which they characterized at Berkeley Lab’s Advanced Light Source.
Lab results revealed that the iAQM polymers are polyionic (or multiply charged), putting them in the category of CPEs. In addition, less energy is needed to excite electrons in these polymers, thus enabling them to absorb low-energy NIR light.
The researchers also showed that cultures of the bacterium Staphylococcus aureus treated with an iAQM CPE, and then irradiated with NIR light, resulted in a 95% reduction of bacterial colonies. That compares to 30% when treated with the polymer alone, and 10% when irradiated only.
Liu said that they next plan to design iAQM polymers for targeted therapies, or for use in energy storage.

Related Articles Read More >

Scientists discover compounds that could help fight any virus
Festo pumps 8% of revenue into R&D, driving miniaturized automation for life sciences
New NVIDIA AI achieves over 75% ‘co-designability’ in atom-level protein generation, doubling the success rate of prior methods
AI system found over 300 potential antibiotic compounds in snake and spider venom
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE