Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Ultrasound microscopy: Aid for surgeons makes the invisible, visible

By R&D Editors | December 9, 2013

Prof. Naohiro Hozumi.Prof. Naohiro Hozumi of Toyohashi Tech is developing the technology to monitor living tissue and cell specimens for medical purposes. An ultrasonic microscope emits a high frequency sound at an object, and the reflected sound captured by its lens is converted into a 2D image of the object under scrutiny.

Ultrasonic microscopes have a wide range of applications including determining the presence of otherwise invisible defects in components used in the automobile, aeronautical, and construction industries.

During surgical operations doctors often stop to inspect tissue taken from a patient’s body for possible remnants signs of disease such as cancer. To do this, pathologists use an optical microscope to examine a slice of tissue taken from the periphery of what should be a healthy area. Now, typical tissues are optically transparency, and must be stained for inspection by an optical microscope. Pathologists can take several hours or possibly several days to evaluate the tissue for the presence of cancerous regions.

“But with my ultrasound microscope, staining is not required because the spectrum of the sound coming back from the tissue changes when the tissue is cancerous, which in turn changes the image,” says Hozumi. “So instead of waiting an hour or more, tissue can be tested almost immediately. Also, because the reflected sound varies depending on the type of cancer, a doctor can interpret the type of disease from the image by comparing it to a reference material.”

Whereas an optical microscope is limited to providing only a relative analysis that is based on contrasting shapes of healthy and diseased tissue, the ultrasound technique provides quantitative results based directly on the acoustic properties of tissues. “By working with quantitatively, we can create a database of information,” says Hozumi. “Then, a doctor can use the database to compare the information of a patient’s tissue specimen and readily know whether it is cancerous or not.”

This type of procedure requires mounting the removed tissue on a plate for examination under the microscope. Now Hozumi and his colleagues are going a step further by developing an ultrasonic probe. This could be used to directly investigate a patient’s condition immediately after surgery to make sure no cancerous cells remain, and without the need to remove more tissue. The Toyohashi Tech researchers are currently working with microelectromechanical system (MEMS) and semiconductor engineers to develop such devices.

Source: Toyohashi Univ. of Technology

 

Related Articles Read More >

DNA microscope offers new 3D view of organisms from the inside out
A tale of two industries: How manufacturing and medical imaging experts can learn from each other
Dark energy camera captures the glittering galaxies of the Antlia Cluster
R&D 100 winner of the day: Automated digital slide scanner, MSP 320
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE